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Outline

• Basic theory (GAN, DCGAN)

• Recent improvement (WGAN, AAE, WAE)

• Applications (CGAN, Text2Img, DeblurGAN)



• style transfer/cycle GAN/domain adaption: 13

• Photo enhancement/deblur/high-resolution 
reconstruction/..: 7

• Optimizing GAN theory: 6

• Image synthesis: 10

• human face related: 7

• human pose related: 4

• Person Re-ID: 3

• Others …

• TOTAL: 75+, around 8% of 979 papers.

GAN related papers per community in
CVPR 2018:

A hot topic
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Competition in this game drives both teams (G and D) to improve their capacity
until the counterfeits are indistinguishable from the genuine articles. 

I. Goodfellow, et.al. Generative Adversarial Nets, NIPS2014.
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The idea of GAN
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The probability that 𝑥 is a real sample.

First train D for several 
times, 
Then train G.

k is hard to control!

The Algorithm
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The original state. 
Both G and D are 
not powerful.

After training D. 
D can tell which 
sample is real.

After training G. 
G can generate 
‘real’ samples.

The final state. 
Both G and D 
are powerful.

The training process of the original GAN
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A. Radford, et.al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR2016.

DCGAN (Deep Convolutional Generative Adversarial Networks)

1) The structure is too simple thus lacks ability. 
2) The generative model and the discriminative model should utilize the 

deep convolutional network.

The weakness
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1. The training process is unstable.

2. Hardly to control the ability of the G and D.

3. The gradient always disappears.

4. Do not have an index to show the performance of the model.

5. The obtained samples lack of diversity.

WGAN (Wasserstein GAN)

Martin. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

Still have weakness
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Martin Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

The modifications:
1. No sigmoid in last layer of D.

2. No log 𝑎 in the loss of the G
and D.

3. For D, clip the updated 
parameter to [-c , c].

WGAN (Wasserstein GAN)
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M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

1. If the D has strong ability to make decision, the gradient of G will disappear

When training the D: we maximize the equation: 

The optimal discriminator : 

= 𝑃- 𝑥 log𝐷 𝑥 +	𝑃0 𝑥 log[1 − 𝐷(𝑥)]

The derivative of 𝐷 𝑥 equals 0: 
𝑃- 𝑥
𝐷(𝑥) − 	

𝑃0 𝑥
1 −𝐷 𝑥 = 0.

𝐷∗ 𝑥 =
𝑃- 𝑥

𝑃- 𝑥 + 𝑃0 𝑥

𝐿 𝐷,𝑔; = 𝔼=~?@ log𝐷 𝑥 + 𝔼=~?A log[1 − 𝐷(𝑥)]

The problem in GAN
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M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017

1. If the D has strong ability to make decision, the gradient of G will disappear

When training the G: we minimize the equation: 

𝔼=~?@ log𝐷 𝑥 + 𝔼=~?A log[1 − 𝐷(𝑥)]

𝔼=~?@ log
?@ =

B
C(?@ = D?A = )

+ 𝔼=~?A log[1 −
?@ =

B
C(?@ = D?A = )

] − 2log2

𝐷∗ 𝑥 =
𝑃- 𝑥

𝑃- 𝑥 + 𝑃0 𝑥

The problem in GAN
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M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017

1. If the D has strong ability to make decision, the gradient of G will disappear

KL divergence : 𝐾𝐿(𝑃G| 𝑃I = 𝔼=~?@log
𝑃G
𝑃I

JS divergence : 𝐽𝑆(𝑃G| 𝑃I =
1
2𝐾𝐿(𝑃G |(𝑃G + 𝑃I)/2 +

1
2 𝐾𝐿(𝑃I |(𝑃G + 𝑃I)/2

𝔼=~?@ log
?@ =

B
C(?@ = D?A = )

+ 𝔼=~?A log[1 −
?@ =

B
C(?@ = D?A = )

] − 2log2

= 2𝐽𝑆(𝑃-| 𝑃0 − 2𝑙𝑜𝑔2
When training the G, we minimize the JS divergence

between real distribution and generative 
distribution.

The problem in GAN
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M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017

1. If the D has strong ability to make decision, the gradient of G will disappear

𝐽𝑆(𝑃-| 𝑃0 = O
𝑙𝑜𝑔2									𝑃- = 0, 𝑃0 ≠ 0; 𝑜𝑟	𝑃- ≠ 0, 𝑃0 = 0
0																𝑃- = 0, 𝑃0 = 0; 𝑜𝑟	𝑃- ≠ 0, 𝑃0 ≠ 0

The two distribution can hardly have 
combinations since 𝑧 is obtained 
randomly and the intrinsic dimension 
is much lower than the real space.

The gradient of G disappears. 

The problem in GAN
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M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017

2. The training process is unstable.

One to close while another to far! 

𝔼=~?A −log𝐷
∗ 𝑥 = 𝐾𝐿(𝑃-| 𝑃0 	− 𝔼=~?A log[1 − 𝐷

∗(𝑥)]

For G, it minimizes the object function: 

= 𝐾𝐿(𝑃-| 𝑃0 	− 2𝐽𝑆(𝑃-| 𝑃0 + 2log2 + 𝔼=~?@ log𝐷
∗ 𝑥

𝐾𝐿(𝑃-| 𝑃0 	− 2𝐽𝑆(𝑃-| 𝑃0

unstable

The problem in GAN
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3. Lack an index to show the performance of the model

𝑊 𝑃-,𝑃0 = 𝑖𝑛𝑓W~X(?@,?A)𝔼(=,Y)~W | 𝑥 − 𝑦 |
Wasserstein Distance (Earth-Mover distance): 

M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

The problem in GAN



Wasserstein GAN 

• does not need to carefully control the capacity of G and D

• alleviates the mode collapse problem

• provides a metric of model capacity during training

• does not require well-designed network architectures

Advantages:
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M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

Some Results



Adversarial Auto-Encoders 

A Makhzani, et.al. Adversarial Auto-encoders. arXiv preprint arXiv:1511.05644

RegularAE

D：z is derived from the encoder of the 
random sampled from prior distribution

Finally: 𝑞\ has same distribution with 𝑝\, we can feed the random 
sampled latent code to the decoder, to generate new samples.



Adversarial Auto-Encoders 

A Makhzani, et.al. Adversarial Auto-encoders. arXiv preprint arXiv:1511.05644



Wasserstein Auto-Encoders 

Ilya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018 (8.0)

Encoder: • Based on a specified divergence, matches the encoded 
distribution 𝑄_	of training samples to the prior 𝑃_.

• Ensures that the latent codes fed to the decoders are 
informative to reconstruct the training sample.

Decoder: • According to the cost function, reconstruct the encoded 
training sample.

Loss Function: Optimal transport cost 𝑊 (𝑃a,𝑃b), a family of Wasserstein 
distance

Reconstruction loss Penalty



Wasserstein Auto-Encoders 

Ilya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018

For each samples in 𝑋 (yellow circle), 
forces 𝑄 𝑍 𝑋 (triangle) to match 
𝑃(𝑍) (white shape).

Forces 𝑄\ = ∫𝑄 𝑍 𝑋 𝑑𝑃a to match 
𝑃(𝑍) (green ball).



Wasserstein Auto-Encoders 

Ilya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018



Wasserstein Auto-Encoders 

Ilya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018

MNIST: 
28*28

celebA: 
64*64



1. Generate new samples for training, especially those hard to collect.

2. Combine with various low-level vision tasks such as segmentation, etc.

3. Complete the broken image (inpainting).

4. Generate high resolution image from lower one.

5. Generate images from the text descriptions.

…

Applications 

GAN can be combined with any task that generates some new things, e.g., the mask in 
segmentation task, the broken part in image inpainting task,  or the high-resolution image, etc.



Conditional GAN

Mehdi Mirza, et.al. Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784
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S.Reed, et.al. Generative Adversarial Text to Image Synthesis. ICML2016

Text2Img



DeblurGAN

Orest Kupyn, et.al. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. CVPR 2018

WGAN loss:

Wasserstein distance

Perceptual loss:

the difference between 
the VGG-19 conv3.3 
feature maps of the 
sharp and restored 
images.



Thanks


