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Outline

* Basic theory (GAN, DCGAN)
* Recent improvement (WGAN, AAE, WAE)

* Applications (CGAN, Text2Img, DeblurGAN)



PERCENTAGE OF PAPERS (x)

A hot topic

GAN related papers per community In

CVPR 2018:

T R—. . 4. - L. . S— : » style transfer/cycle GAN/domain adaption: 13
®-® DEEP o . . .
o o\’/ \.\L Photo enhancement/deblur/hlgh—resolutlon

10} gwe LoTr3 2 reconstruction/..: 7

* Optimizing GAN theory: 6

I o——o ¥ * Image synthesis: 10

0le p * human face related: 7

/‘1 * human pose related: 4
*1° /.____. ._*.___,/'\: * Person Re-ID: 3
/ e °
0 :/: o PP et 4.:"?/! 1 - Others

PPN PR e O PR G N e R oV e
* TOTAL: 75+, around 8% of 979 papers.



The idea of GAN

generator | |(;

D

(data sample —{ discriminator }—( gigs:slt:r } G(2)

data
sample?

yes/no

Competition in this game drives both teams (G and D) to improve their capacity
until the counterfeits are indistinguishable from the genuine articles.

|. Goodfellow, et.al. Generative Adversarial Nets, NIPS2014.



The Algorithm

mcgn max V(D,G) =Egp,.(x)log

D(x

p—

|+ Ezrnp.(2)log(l — D(G(2)))].

The probability that x is a real sample.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, &, is a hyperparameter. We used k£ = 1, the least expensive option, in our

experiments.

for number of training iterations do
for k steps|do

e Sample minibatch of m noise samples {z(}), ... 2("™)} from noise prior p,(z).
e Sample minibatch of m examples {z!),... (™} from data generating distribution
Pdata (:B)

4 Update the discriminator by ascending its stochastic gradient:

m

ng% S [logD (m(i)) +log (1 -D (G (z("))))] .

1=

end for

e Sample minibatch of m noise samples {2, ... z("™} from noise prior p,(z).
Update the generator by deskending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for

First train D for several
times,
Then train G.

k Is hard to control!

The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.




The training process of the original GAN
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The original state. After training D. After training G. The final state.
Both G and D are D can tell which G can generate Both G and D
not powerful. sample is real. real’ samples. are powerful.




The weakness

1) The structure is too simple thus lacks ability.
2) The generative model and the discriminative model should utilize the
deep convolutional network.

» DCGAN (Deep Convolutional Generative Adversarial Networks)

100 z

CONV4 -
G(2)

A. Radford, et.al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR2016.



Still have weakness

1. The training process Is unstable.

2. Hardly to control the ability of the G and D.

3. The gradient always disappears.

4. Do not have an index to show the performance of the model.

5. The obtained samples lack of diversity.
» WGAN (Wasserstein GAN)

Martin. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875




WGAN (Wasserstein GAN)

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O.

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.

Neritics the number of iterations of the critic per generator iteration.

Require: : wy, initial critic parameters. 6, initial generator’s parameters.

1:
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11:
12:

2
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while # has not converged do 1
for t =0, ..., Neritic do '
Sample {z()}™ ~ P, a batch from the real data.

Sample {z(i)}g’;l ~ p(z) a batch of prior samples. 2.

Ju < Ve [ 2imy fu@®) = 5300, fulge(2))] »

w < w + a - RMSProp(w, g.)

w <« clip(w, —c, ¢) 3
end for

Sample {z(V}™ ~ p(2) a batch of prior samples.

g9 < —Vo=>" fulge(z?))
0 < 0 — a - RMSProp(4, gg)
end while

Martin Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875

The modifications:
No sigmoid in last layer of D.

No log(a) in the loss of the G
and D.

For D, clip the updated
parameter to [-c, c].



The problem in GAN

1. If the D has strong ability to make decision, the gradient of G will disappear

When training the D: we maximize the equation:

L(D» 99) — IEvaPr logD(x) + [Ex~Pg log[l o D(x)]
= B-(x)logD(x) + F;(x)log[1— D(x)]

B-(x) P, (x)

The derivative of D (x) equals 0: D) 1-DG) 0.
> The optimal discriminator : D* () = P.(x)
O = o+ 5@

M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875



The problem in GAN

1. If the D has strong ability to make decision, the gradient of G will disappear

When training the G: we minimize the equation:

ey B®
®=ro+hm
Ex~p logD(x) + Ex~p, log[1 — D (x)]
Pr(x) _ Pr(x) _
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M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017



The problem in GAN

1. If the D has strong ability to make decision, the gradient of G will disappear

P
KL divergence : KL(P1||P2) — Ex~PT10gP_1
2

1 1
JS divergence JS(P1||Py) = iKL(PlH(Pl + P,)/2) + iKL(PZH(Pl + P,)/2)

P.(x)

Py (x)
Ey-p logs %(P,, (x)+Py (x))

E(Pr (x)+Pg (x))

> =2JS(B||B;) — 2log2

+ IEx~pglog[1 — | — 2log2

between real distribution and generative

[ When training the G, we minimize the ]S divergence
distribution.

M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017



The problem in GAN

1. If the D has strong ability to make decision, the gradient of G will disappear

log?2 P. =
0 P =

P,#0;:0rP-+0,P, =0
_ g ) r v Lg
JS(Pr1[B) = h =0

; 07| B # O,Pg #* 0

The two distribution can hardly have
combinations since z is obtained
randomly and the intrinsic dimension
Is much lower than the real space.

> The gradient of G disappears.

M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017



The problem in GAN

2. The training process is unstable.

For G, it minimizes the object function:

[Ex~Pg [—logD"(x)] = KL(F:| g) x~P log[1 — D" (x)]

= KL(B||P;) — 2JS(P||P;) + 2log2 + E,.p_logD*(x)

j> KL(P||P,) — 2/S(P;||P,)

One to close while another to far! > unstable

M. Arjovsky, et.al. Towards Principled Methods for Training Generative Adversarial Networks. ICLR 2017



The problem in GAN

3. Lack an index to show the performance of the model

Wasserstein Distance (Earth-Mover distance):

W(B.B) = infy-ne,p)Eyy~yl1x = yll]
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M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875



Wasserstein GAN

Advantages:

* does not need to carefully control the capacity of G and D
* alleviates the mode collapse problem
* provides a metric of model capacity during training

* does not require well-designed network architectures



Some Results

WGANSs vs DCGANs (without BN)

M. Arjovsky, et.al. Wasserstein GAN. arxiv.org/abs/1701.07875



Adversarial Auto-Encoders

X

[ -

Draw samples
from p(z)

>

z ~ q(z)

—>{[nput >

-/

RegularAE

Adversarial cost

for distinguishing

positive samples p(z)
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D : z is derived from the encoder of the
random sampled from prior distribution

Finally: q, has same distribution with p,, we can feed the random
sampled latent code to the decoder, to generate new samples.

Za*

Draw samples
from p(z)

Input

|

Y

~

o

/_.*

Y

\

Draw samples

from N(z|0,1) +

Ny
«——]Style] |oooocoooed]

<

A Makhzani, et.al. Adversarial Auto-encoders. arXiv preprint arXiv:1511.05644
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Adversarial Auto-Encoders
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(b) SVHN

.arXiv preprint arXiv:1511.05644
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Wasserstein Auto-Encoders

Encoder: - Based on a specified divergence, matches the encoded
distribution Q of training samples to the prior Py.

* Ensures that the latent codes fed to the decoders are
iInformative to reconstruct the training sample.

Decoder: - According to the cost function, reconstruct the encoded
training sample.

Loss Function: Optimal transport cost W, (Py, Pg), a family of Wasserstein
distance

D Px. FPg) = inf Ep,E X.G(Z A-D . P7).
wAEk(Px, Pg) ol o B oz1x) le(X, G(2))]| + 72(Qz,Pz),

Reconstruction loss Penalty

llya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018 (8.0)



Wasserstein Auto-Encoders

(a) VAE

Ps(X|Z

/1

VAE reconstruction

For each samples in X (yellow circle),
forces Q(Z|X) (triangle) to match

P(Z) (white shape).

(b) WAE

[EEN

WAE reconstruction

Forces Q, = [ Q(Z|X)dPy to match
P(Z) (green ball).

llya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018



Wasserstein Auto-Encoders

Algorithm 1 Wasserstein Auto-Encoder Algorithm 2 Wasserstein Auto-Encoder

with GAN-based penalty (WAE-GAN). with MMD-based penalty (WAE-MMD).
Require: Regularization coefficient A > 0. Require: Regularization coefficient A\ > 0,
Initialize the parameters of the encoder Qy, characteristic positive-definite kernel k.

decoder Gg, and latent discriminator D,. Initialize the parameters of the encoder 4,

while (¢, 6) not converged do decoder Gy, and latent discriminator D .

Sample {xy,...,x,} from the training set .
. while (¢, ) not converged do
Sample {z1,..., 2,} from the prior Py o
Sample 2; from Qu(Z|z:) fori = 1,...,n Sample {z1,...,x,} from the training set
Sample {z1,...,2,} from the prior Pz

Update D, by ascending:
Sample Z; from Qy(Z|x;) fori=1,...,n

2 Z log D, () + log(l _ D’y(zi)) Update Q4 and Gy by descending:
Update Q4 and Gy by descending: n Z C('Ti’ G"(zi)) n(n— 1) Zs: k(ze, z5)
- J
1 n
LS (@, Gol2)) — A+ log Dy (21) 1) 2 ke E) Zk 2.%)
" i1=1 (;é]
end while end while

llya Tolstikhin, et.al. Wasserstein Auto-Encoders. ICLR 2018



Wasserstein Auto-Encoders

WAE-MMD WAE-GAN

VAE
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Applications

1. Generate new samples for training, especially those hard to collect.

2. Combine with various low-level vision tasks such as segmentation, etc.

3. Complete the broken image (Inpainting).
4. Generate high resolution image from lower one.

5. Generate images from the text descriptions.

GAN can be combined with any task that generates some new things, e.g., the mask in
segmentation task, the broken part in image inpainting task, or the high-resolution image, etc.



Conditional GAN — - .
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min max V(D, G) = Eqrpy (w108 D(@|y)] + Exnp, (2 log(1 — D(G(219)))]

Mehdi Mirza, et.al. Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784



Text2Img

This flower has small, round violet R This flower has small, round violet
petals with a dark purple center X = G( Z, \,D(t) ) petals with a dark purple center
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Generator Network Discriminator Network

this small bird has a pink this magnificent fellow is the flower has petals that this white and yellow flower
breast and crown, and black almost all black with a red are bright pinkish purple  have thin white petals and a
primaries and secondaries. crest, and white cheek patch. with white stigma round yellow stamen

S.Reed, et.al. Generative Adversarial Text to Image Synthesis. ICML2016



D e b | U rG A N Wasserstein distance
I T

WGAN loss:

Perceptual loss +
. . WGAN loss
Wasserstein distance

Restored

Perceptual loss:

the difference between
the VGG-19 conv3.3
feature maps of the
sharp and restored
Images.

Generator

Blurred

Orest Kupyn, et.al. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. CVPR 2018
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