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Abstract. Efficient and effective real-world image super-resolution (Real-
ISR) is a challenging task due to the unknown complex degradation
of real-world images and the limited computation resources in practi-
cal applications. Recent research on Real-ISR has achieved significant
progress by modeling the image degradation space; however, these meth-
ods largely rely on heavy backbone networks and they are inflexible to
handle images of different degradation levels. In this paper, we propose
an efficient and effective degradation-adaptive super-resolution (DASR)
network, whose parameters are adaptively specified by estimating the
degradation of each input image. Specifically, a tiny regression network
is employed to predict the degradation parameters of the input im-
age, while several convolutional experts with the same topology are
jointly optimized to specify the network parameters via a non-linear
mixture of experts. The joint optimization of multiple experts and the
degradation-adaptive pipeline significantly extend the model capacity to
handle degradations of various levels, while the inference remains efficient
since only one adaptively specified network is used for super-resolving
the input image. Our extensive experiments demonstrate that the pro-
posed DASR is not only much more effective than existing methods on
handling real-world images with different degradation levels but also ef-
ficient for easy deployment. Codes, models and datasets are available at
https://github.com/csjliang/DASR.

Keywords: Real-world image super-resolution, degradation-adaptive,
efficient super-resolution

1 Introduction

Single image super-resolution (SISR) [1–5] is an active research topic in low-level
vision, aiming at reconstructing a high-resolution (HR) version of a degraded
low-resolution (LR) image. Since the seminal work of SRCNN [6], many convo-
lutional neural network (CNN) based SISR methods [7–11] have been proposed,
most of which assume a pre-defined degradation process (e.g ., bicubic down-
sampling) from HR to LR images. Despite the great success, the performance of
these non-blind SISR methods will be much deteriorated when facing real-world
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images [12] because of the mismatch of degradation models between the training
data and the real-world test data [13].

The blind image super-resolution (BISR) methods [12,14–17] have been pro-
posed to address the problems of non-blind SISR methods by considering more
complex degradation kernels extracted from real-world images. However, the
degradation space of these methods is actually restricted to a set of pre-collected
kernels, such as the DPED kernel pool [17, 18]. For real-world images, their
degradation space can be much larger, including more types and more com-
plex kernels than the DPED kernel pool, more complex and stronger noise, and
other degradation operations such as compression. Therefore, many recent re-
searches have been focused on the real-world image super-resolution (Real-ISR)
tasks [19–26] by modeling and synthesizing the complex degradation process of
real-world images [27, 28]. The representative works include BSRGAN [13] and
Real-ESRGAN [29], which introduce comprehensive degradation operations such
as blur, noise, down-sampling, and JPEG compression, and control the severity
of each operation by randomly sampling the respective hyper-parameters. They
also employ random shuffle of degradation orders [13] and second-order degra-
dation [29] to better simulate the real-world complex degradations, respectively.

Despite the remarkable progress of BSRGAN [13] and Real-ESRGAN [29]
on improving the image perceptual quality, they have several limitations for
practical usage. On one hand, they are basically designed to work on severely
degraded LR images. While BSRGAN and Real-ESRGAN can generate a certain
amount of details on some tough LR images, they are difficult to generate fine
details on mildly degraded LR inputs. It is highly anticipated to develop Real-
ISR models which can handle images with different degradation levels. On the
other hand, the BSRGAN and Real-ESRGAN methods rely on heavy backbone
networks (e.g ., RRDB [2]), which make them difficult to be deployed on devices
with limited computational resources [30–34]. It is also anticipated to develop
efficient Real-ISR models to meet the requirement of high efficiency.

To tackle the above problems, in this paper, we propose a degradation-
adaptive super-resolution (DASR) network whose parameters are adaptively
specified to the given image according to its degradation. Our DASR consists of
a tiny regression network to estimate the degradation parameters of the input
image and multiple light-weight super-resolution experts, which are jointly opti-
mized on a balanced degradation space. For each input image, an adaptive net-
work is constructed via a non-linear mixture of experts, whose adaptive weight-
ing factors are specified by the estimated degradation parameters. The multiple
super-resolution experts and the degradation-aware mixture significantly im-
prove the model capacity for handling images of different degradations. Mean-
while, the whole pipeline of DASR is highly efficient to meet the requirement of
Real-ISR tasks, as only one adaptive network is employed to super-resolve the
image during inference and the cost of mixing experts is negligible.

The contributions of this paper are two-fold. First, we propose a degradation-
adaptive super-resolution network, which significantly improves the model ca-
pacity to super-resolve images of various degradation levels. Second, the pipeline
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of our DASR network is highly efficient, providing a good solution to perform
Real-ISR in practical applications. Extensive experiments verified the effective-
ness and efficiency of the proposed method.

2 Related Work

2.1 Real-World Image Super-Resolution

How to reproduce effectively and efficiently the HR image from low-quality and
low-resolution real-world images is a challenging issue in SISR research. The
distribution of real-world images can differ dramatically due to the varying im-
age degradation process, different imaging devices, and image signal processing
methods [12,28]. Researches [19,35] have tried to capture real-world HR-LR im-
age pairs by adapting the focal length of the camera, yet the collection of data
is tedious and this can only describe a limited subspace of image degradation.
There are also some unsupervised methods [23, 28] proposed to explore the do-
main adaptation between the synthesized LR image and the real one, yet the
domain gap is still inevitable which deteriorates the SR performance [21,22].

Recently, several Real-ISR methods such as BSRGAN [13], Real-ESRGAN [29]
and SwinIR [36] have achieved remarkable progress by introducing comprehen-
sive degradation models to effectively synthesize real-world images. However,
they rely on a heavy and computationally intensive backbone network, e.g .,
RRDB [2] and Swin transformer [37], and are not flexible to process images of
different degradation levels. In this paper, we propose a degradation-adaptive
framework to address this issue, targeting an effective and efficient network for
the challenging Real-ISR task.

2.2 Image Degradation Modeling

In many non-blind SISR methods [1–4,38–40], the degradation model is simply
assumed as bicubic down-sampling or blurred down-sampling with a Gaussian
kernel. The performance of these non-blind methods can be dramatically un-
dermined when applied to images with different degradations [12]. As a remedy,
SRMD [14], UDVD [41] and some other methods [42,43] extend the degradation
space to cover more blur kernels and noise levels, and use the degradation map
as additional input to perform conditional SISR. While these methods can han-
dle multiple degradations with a single model, they rely on accurate degradation
estimation, which itself is also a challenging task.

A few blind SISR methods have been proposed for unknown degradation [27,
28, 44–48]. In KMSR [17], a kernel pool is constructed from real photographs
using generative adversarial network [49], followed by synthesizing training pairs
in a more realistic way. Some methods like IKC [16] and VBSR [50] incorporate a
blur kernel estimator into the SISR framework, which can be adaptive to images
degraded from different blur kernels [15, 51]. However, most of the blind SISR
methods are trained with a pre-collected kernel pool [17,18], and hence they are
not really blind and can hardly be generalized to real-world images.
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Recent Real-ISR methods such as BSRGAN [13] and Real-ESRGAN [29]
further extend the degradation modeling space by incorporating comprehensive
degradation types with randomly sampled degradation parameters to enhance
the variation. The larger degradation space helps the trained Real-ISR model to
improve the perceptual quality of some tough LR inputs. However, the degrada-
tion parameter sampling in BSRGAN and Real-ESRGAN is unbalanced to train
a flexible network, limiting the trained model in generating fine details, espe-
cially for inputs with mild degradations. In this work, we propose to balance the
degradation space by partitioning it into three levels with balanced frequencies.
Such balanced space facilitates the optimization of our degradation-adaptive
model on different degradation levels and brings a better approximation to the
real-world LR images.

2.3 Mixture of Experts and Dynamic Convolution

The mixture of experts (MoE, [52–55]) is a long-standing method that calculates
the weighted sum of multiple expert networks to improve the performance. A
trainable gating network is employed to compute the weight for activating each
expert [56], usually based on an explicit (e.g ., labeled classes) or implicit (con-
tent clustering) partition of the data. In this paper, we calculate the adaptive
weight of experts according to the degradation of the image for the Real-ISR
tasks. Besides, instead of activating all experts and calculating the weighted sum
of outputs as in previous MoE methods [57], we adaptively mix the network pa-
rameters, resulting in only one adapted network for inference. Such a pipeline is
effective and efficient due to the increased non-linearity and the fast inference.

Dynamic convolution [58, 59] or conditional convolution [60, 61] aims to en-
hance the feature representation capacity by making the convolutional param-
eters sample-adaptive. Most of the existing methods optimize multiple sets of
convolutional parameters and learn feature self-attention to linearly combine the
parameters. However, this pipeline introduces many computations to obtain self-
attention, causing a trade-off between efficiency and effectiveness. In this paper,
we achieve the non-linear mixture of experts via an adapted conditional convo-
lution, where the conditions are the degradation parameters and the weighting
factors are calculated once for all layers to keep efficiency.

3 Methodology

This section presents our degradation-adaptive network for real-world image
super-resolution, i.e., DASR. As shown in Figure 1, DASR mainly consists of
a degradation prediction network and a CNN-based SR network with multiple
experts. In the following sections, we first provide the details of the proposed
DASR framework and then introduce our degradation modeling to set degrada-
tion parameters and generate training pairs.
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Fig. 1. Overall pipeline of the proposed DASR. Here, x,y and ŷ denote the LR image,
the ground truth HR image and the super-resolved result, respectively. For each convo-
lution layer C, the parameters WC

i of N experts are mixed according to the weighting
factors in a. The input x is super-resolved to ŷ by the adapted network EA.

3.1 Degradation-Adaptive Super-Resolution

Degradation prediction network. To allow efficient and degradation-adaptive
super-resolution, we propose to estimate the degradation parameters v ∈ R1×n

of each input x via a regression network P, i.e., v̂ = P(x), where v̂ denotes the
estimation of v. We employ a set of parameters v to elaborately describe the
degradation space. The details of degradation space modeling will be discussed in
Section 3.2. To make the estimation process efficient, we design a light-weighted
network P to predict v. Specifically, P consists of 6 convolution layers with
Leaky ReLU activation, followed by a global average pooling layer. We first use
convolution layers to extract image spatial degradation features and then use
the global average pooling layer to estimate the degradation parameters.

To optimize the network P, we introduce a regression loss between the es-
timated degradation parameters v̂ and the ground-truth v using the `1-norm
distance as follows:

Lregression = ‖v̂ − v‖1. (1)

According to the degradation model, each parameter in v is randomly sampled
to specify the degradation process to generate the LR-HR image pairs.

Image super-resolution network. An ideal Real-ISR method is expected
to be both effective and efficient. On one hand, in real-world SR tasks, the
computation resources are usually limited, especially for edge devices. On the
other hand, the model should be able to effectively handle images with various
kinds of degradations. Nevertheless, most of the current SR methods [13, 29,
36, 38, 62] can only trade-off between efficiency and effectiveness, and they are
inflexible to handle images with different degradation types and levels.

To develop an effective and efficient Real-ISR model, we propose a degradation-
adaptive SR network to boost the model capacity via a non-linear mixture of
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experts (MoE) strategy, whose additional cost is negligible during inference. In
specific, we employ N convolutional experts, denoted by E = [E1, E2, · · · , EN ],
where each expert Ei is a light-weighted SR network, e.g ., SRResNet [38] or
EDSR-M [62], with independent parameters ΦEi . All the Ei share the same net-
work topology, and they are optimized jointly with the supervision of the same
loss. Our idea is to implicitly train each expert to handle images falling into a
sub-space of the degradation space so that they can work together to process
images with various kinds of degradations in the whole space.

A vector of weighting factors a ∈ R1×N , which is adaptive to the degradation
of the input x, is then calculated to adaptively mix the N experts. We calculate
a conditioned on the estimated v̂ via a tiny network A with two fully-connected
layers, i.e., a = A(v̂). As both v̂ and a are of low dimension (n = 33 and
N = 5 in our experiments), the network A is highly efficient. Note that if a is
constrained to be a one-hot vector, only one expert will be activated for super-
resolving the input x, and this will degrade our framework to a competitive
MoE [56], which may perform well on tasks whose sample distribution space
can be partitioned with clear boundaries, yet it can hardly work well for the
Real-ISR task with a large and continuous degradation space.

With the multiple experts E and their adaptive weighting factors a, we mix
the experts adaptively in a non-linear manner. For each convolution layer C of
the desired network, we employ the dynamic convolution technique [58, 61] to
parameterize the convolutional kernels as follows:

foutput = σ((a1 ·WC
1 + a2 ·WC

2 + · · ·+ aN ·WC
N ) ∗ finput). (2)

where finput and foutput denote the input and the output features, ai indicates
the ith value of a, WC

i denotes the layer C parameters for expert Ei and σ is
the activation function. That is, we adaptively fuse the parameters of each layer
among all experts, resulting in an adaptive network, denoted as EA.

Note that in classic dynamic convolution, the weighting factor of each layer is
calculated by an independent network conditioned on the feature map of the last
layer, thus introducing non-negligible computational costs. In contrast, we learn
a single set of degradation-adaptive weighting factors a for all convolution layers,
which is very efficient. Our framework follows the spirit of MoE but in a non-
linear manner due to the activation operation in intermediate layers. The non-
linearity and the degradation-adaptive mixture of multiple experts significantly
extend the model capacity to handle degradations of various levels.

Our DASR is very efficient. For each convolutional layer, the model only de-
ploys one adapted network EA in the inference stage, rather than deploying N
models as done in the classic MoE methods [52,53]. The degradation prediction
network P and the weighting module A are also very light-weighted. Therefore,
the cost of inference is of the same order as one single expert network. The com-
putational overhead caused by the mixture operation is negligible. Specifically,
the mixture process consists of multiplications and additions operations of the
parameters of N experts. For a light-weighted backbone network like SRResNet
or EDSR-M, the number of parameters of each expert is only 1.52M , and they
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are independent of the size of input images. Therefore, compared with the cal-
culation of multiple feature maps, the complexity of the mixture of parameters
is several orders of magnitude lower and thus can be neglected.

3.2 Degradation Modeling

Since high-quality real-world LR-HR pairs are hard to be collected due to the
misalignment issue [19, 35], the degradation modeling is very important to syn-
thesize real-world LR inputs x from a given HR image y for Real-ISR model
training. A degradation space, denoted by S, should be pre-defined to synthe-
size training pairs and perform degradation-adaptive optimization. The qual-
ity of an LR sample x in S is controlled by a degradation parameter vector
v = [v1, v2, · · · , vn], where vi specifies the type or severity of a degrading opera-
tion and n denotes the number of degradation parameters. In our DASR, v also
serves as the ground-truth for training the degradation prediction network.

The image degradation model has been recently improved significantly from
the simple bicubic down-sampling [2, 6] to shuffling [13] and second-order [29]
pipelines. We adopt the degradation operations of blurring (both isotropic and
anisotropic Gaussian blur), resizing (both down-sampling and up-sampling with
area, and bilinear and bicubic operations), noise corruption (both additive Gaus-
sian and Poisson noise), and JPEG compression in our modeling. In v, we use a
one-hot code to quantify the degradation operation type and use a single value
to record the degradation level normalized by its respective dynamic range.

It is worth mentioning that different from the methods [14, 16] which quan-
tify a blur kernel by its kernel coefficients, we quantify a blurring degradation
by its kernel size s, the standard deviation σ1, σ2 along the two principal axes,
and the rotation degree θ. In this way, the degradation parameters are more
interpretable to specify the degradation types and levels, and can better sup-
port the degradation-aware mixture of experts. Meanwhile, the parameter vec-
tor [s, σ1, σ2, θ] has only 4 dimensions, while the kernel vector k will have much
higher dimensions to estimate. Benefiting from the interpretability and com-
pactness of the degradation space, our DASR allows explicit user control to-
wards degradation parameters during inference. This can facilitate many user-
interactive applications to customize the desired super-resolving effect.

Though the shuffling degradation method in BSRGAN [13] and the second-
order degradation pipeline in Real-ESRGAN [29] can generate a sufficiently large
degradation space, it is hard for them to train a model which can adaptively
handle images with different levels of degradations. Our DASR is designed to be
adaptive to a wide range of real-world inputs with multiple light-weight expert
networks, each of which is expected to handle a subspace of images of different
degradation levels. Therefore, we partition the whole degradation space S into 3
levels [S1, S2, S3] by specifying the parameters v accordingly. Among them, S1

and S2 are generated with first-order degradation with small and large parame-
ter ranges, respectively, while S3 is generated by the second-order degradation.
Due to space limitation, more details of the degradation operations and the
specification of [S1, S2, S3] are provided in the Section 6.1 in the Appendix.
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3.3 Training Losses

The learnable modules of our DASR network include [E,P,A]. As mentioned in
Section 3.1, the Lregression loss is used to optimize P to predict the degradation
parameters. To optimize the overall framework, following the many works in
literature [2,13,29], we adopt the L1-norm pixel-wise loss Lpixel, the perceptual
loss Lperceptual and the adversarial loss Ladversarial. The total loss is defined as
follows (more details are provided in the Section 6.2 in the Appendix):

Ltotal = Lpixel + λ1Lregression + λ2Lperceptual + λ3Ladversarial, (3)

where λ1, λ2 and λ3 denote the balancing parameters.

4 Experiments

4.1 Training Details

Following previous works [2,29], we employ DIV2K, Flickr2K, and OutdoorScene-
Training datasets for training our DASR model. For efficiency, we employ the
SRResNet [38] as our backbone. The weights of the N experts are initialized by
the model pre-trained with pixel-wise loss. The Adam [63] optimizer is employed
to train the network. The learning rate is set to 1× e−4, the total batch size is
24 and the training iteration is set to 500K. We balance the training loss with
λ1 : λ2 : λ3 = 1 : 1 : 0.1. Without loss of generality and for a fair comparison, we
conduct Real-ISR experiments with the scale factor of 4 by following the setting
in BSRGAN [13] and Real-ESRGAN [29]. In our experiment, the dimension of
degradation parameters is n = 33 and the number of experts is N = 5. The LR
patch size is set to 64× 64.

4.2 Evaluation and Compared Methods

We evaluate our DASR method both quantitatively and qualitatively. For quan-
titative evaluation, as in BSRGAN [13] we synthesize 300 LR-HR pairs by ap-
plying the 3 levels of degradations to the 100 validation images in the DIV2K
dataset, i.e., 100 LR-HR pairs for each level. We also make the comparison
on the original DIV2K dataset with bicubic downsampling. An illustration of
images with different degradations is shown in Fig. 2, where more samples are
shown in Section 6.3 in the Appendix. For qualitative evaluation, we also employ
the images in the RealSRSet [13, 29], where the input images are corrupted by
various blur, noise, or other real degradation operations.

We compare the proposed DASR with representative and state-of-the-art
SR methods, including RRDB [2], ESRGAN [2], IKC [16], BSRGAN [13], Real-
ESRGAN [29] and Real-SwinIR (-M and -L) [36]. Among them, RRDB is trained
on bicubic degradation with pixel-wise loss; ESRGAN is trained on bicubic
degradation with pixel-wise, perceptual and adversarial losses; IKC is a represen-
tative BISR method trained on various isotropic Gaussian blur kernels; BSRGAN
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(b) Bicubic (c) Level-I (d) Level-II (e) Level-III(a) HR

Fig. 2. Sample images with different levels of degradations in our datasets.

and Real-ESRGAN are state-of-the-art Real-ISR methods with a heavy RRDB
backbone; Real-SwinIR is trained on the degradation space of BSRGAN with
the computationally expensive SwinIR backbone.

For a more comprehensive and fair comparison, we also re-train those com-
monly used backbone networks, including SRResNet, EDSR, RRDB, and SwinIR,
with our constructed training dataset. Following the common practice [13, 29],
we employ PSNR (the larger the better) and LPIPS (learned perceptual image
patch similarity, the smaller the better) to quantitatively compare the perfor-
mance of different methods on synthetic datasets, and make visual comparisons
on real-world images since there are no reference images.

4.3 Quantitative Comparison

Effectiveness. In Table 1 and Table 2, we quantitatively compare the perfor-
mance of competing methods in terms of PSNR and LPIPS on datasets with dif-
ferent levels of degradations. Specifically, Table 1 compares the methods trained
with their own degradation models, while Table 2 compares the methods re-
trained on our proposed degradation space.

As shown in Table 1, existing methods can only achieve satisfactory perfor-
mance on datasets with a specific type of degradation. For example, RRDB and
ESRGAN can respectively achieve good fidelity and perceptual quality on the
bicubic-downsampled dataset, yet their performance drops dramatically when
handling images with other degradations, even for the ‘Level-I’ degradation with
mild noise and blurs. Real-ESRGAN, BSRGAN, and Real-SwinIR perform well
on the most severely degraded dataset, i.e., ‘Level-III’. However, their perfor-
mance deteriorates much on the other three datasets.

In contrast, our DASR achieves stable and significant improvement against
other methods under the first three types of degradations, which cover the ma-
jority of real-world images, while achieving highly competitive (among the best
two) results for the last type of degradation. For example, DASR outperforms
Real-ESRGAN by about 1.7dB in PSNR and 26% in LPIPS on the ‘Level-I’
dataset. On the ‘Level-III’ dataset with severely degraded images (as shown in
Fig. 2 (d)), DASR achieves almost the same PSNR and LPIPS indices as BSR-
GAN. These observations clearly demonstrate that our DASR can generalize
well to images with a wide range of degradations.

To further validate the effectiveness of our degradation-adaptive strategy, in
Table 2 we re-train the backbones of popular SR models on our proposed degra-



10 J. Liang et al.

Table 1. Quantitative comparison of different methods on datasets with different
degradations (D-Level). ‘Bicubic’ denotes the DIV2K validation set with bicubic degra-
dation, while ‘Level I’, ‘II’, and ‘III’ denote the datasets with mild, medium, and se-
vere degradations, respectively. For the compared methods, we employ their officially
released pre-trained models. The PSNR is calculated on the Y channel of YCbCr space.

D-Level Metric RRDB ESRGAN IKC BSRGAN
Real-

ESRGAN
Real-

SwinIR-M
Real-

SwinIR-L
DASR

Bicubic
PSNR 30.92 28.17 28.01 27.32 26.65 26.83 27.21 28.55
LPIPS 0.2537 0.1154 0.2695 0.2364 0.2284 0.2221 0.2135 0.1696

Level-I
PSNR 26.27 21.16 24.09 26.78 26.17 26.21 26.45 27.84
LPIPS 0.3419 0.4727 0.3805 0.2412 0.2312 0.2247 0.2161 0.1707

Level-II
PSNR 26.46 22.77 25.39 26.75 26.16 26.12 26.39 27.58
LPIPS 0.4441 0.4900 0.4531 0.2462 0.2391 0.2313 0.2213 0.2126

Level-III
PSNR 23.91 23.63 22.91 24.05 23.81 23.34 23.46 23.93
LPIPS 0.7631 0.7314 0.7583 0.3995 0.3901 0.3844 0.3765 0.4144

dation space. Note that the heavy RRDB backbone is adopted in both BSRGAN
and RealESRGAN, and the lightweight SRResNet is adopted in our DASR as
the backbone. As can be seen from this table, with the same network topology
and similar computational overhead, our DASR outperforms the baseline SR-
ResNet on all datasets by a large margin, e.g ., improving 0.5db of PSNR on the
bicubic-downsampled dataset and about 5% of LPIPS on the Level-II dataset.
This demonstrates that the degradation-adaptive mixture of multiple experts
can significantly extend the model capacity while keeping the efficiency.

Compared to RRDB and SwinIR backbones that are adopted in recent state-
of-the-art methods [13,29,36], our DASR consumes much less computational re-
sources, e.g ., about 1/3 and 1/12 latency of RRDB and SwinIR, respectively. At
the same time, DASR outperforms these heavy models in terms of reconstruction
fidelity on all datasets, demonstrating its effectiveness of degradation-adaptive
super-resolution and high efficiency to deploy in practice.

Efficiency. The inference efficiency is a crucial factor in Real-ISR tasks due
to the limited computational resources in practical applications. We compare
different backbone networks in terms of multiple efficiency-related metrics and
depict the results in the bottom rows of Table 2.

As shown in the table, the computational overhead of different backbone
networks differs dramatically. For example, RRDB [2], which is employed in re-
cent Real-ISR methods [13, 29], consumes about 7 times the FLOPs and more
than 4 times the inference time than SRResNet [38]. In other words, the RRDB
based Real-ISR methods achieve superior performance at the price of applica-
bility. The recent transformer-based method SwinIR has an acceptable number
of FLOPs, however, it actually consumes much more inference time due to the
heavy computation of attentions and frequent IO consumption.

Benefiting from the light SRResNet-based backbone and the efficient degra-
dation prediction and parameter fusion, our DASR is very efficient. In specific,
the degradation prediction network P and the weighting module A consume
18GMac FLOPs, 18ms latency, 0.47M parameters and 111M GPU memory in
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Table 2. Quantitative comparison of different backbone networks re-trained on our
proposed degradation space and the efficiency comparison (the bottom rows). The
evaluation datasets are the same as in Table 1. For efficiency evaluation, the input-
dependent metric FLOPs is calculated on images with 256 × 256 pixels; the Latency
and Memory are the average inference time and the maximum GPU memory allocation
on the DIV2K validation dataset (most LR inputs are with 510×339 pixels). Statistics
are collected following the implementation of [64,65] by using an NVIDIA V100 GPU.

Data & Metrics SRResNet EDSR SwinIR RRDB DASR

Bicubic
PSNR 28.05 28.26 28.28 27.92 28.55
LPIPS 0.1747 0.1807 0.1488 0.1473 0.1696

Level-I
PSNR 27.60 27.79 27.78 27.84 27.84
LPIPS 0.1772 0.1834 0.1531 0.1569 0.1707

Level-II
PSNR 27.34 27.53 27.45 27.29 27.58
LPIPS 0.2228 0.2284 0.1854 0.1886 0.2126

Level-III
PSNR 23.71 23.87 23.60 23.54 23.93
LPIPS 0.4419 0.4351 0.3869 0.3847 0.4144

Latency (ms) 113 105 1719 460 142
#FLOPs (GMac) 166 130 539 1176 184
#Params (M) 1.52 1.52 11.72 16.70 8.07
#Memory (M) 2359 2169 2699 2417 2452

total for N = 5. Besides, the consumption on parameter fusion operation is
negligible, as there are only N × 1.52M multiplications and additions respec-
tively and they can be calculated in parallel. Compared with the classical MoE
methods that mix the feature maps of all experts [52,53,57,66], our DASR only
conducts one forward pass. As a result, the computational cost increases slightly
with a larger N , which supports a flexible extension of model capacity.

It is worth mentioning that although our model has more parameters, the
maximum GPU memory consumption does not increase much as shown in the
row of #Memory in Table 2, since the deployment of model parameters costs
much less space than storing input-dependent feature maps. On the other hand,
the increased model parameters do not demand much storage space, which is
much easier to afford than the computing power.

4.4 Qualitative Comparison

Fig. 3 shows the visual comparisons between different methods on images with
different degradations. One can see that DASR can stably restore sharp and real-
istic details and remove artifacts for a wide range of degradations. In specific, the
first sample image is degraded with bicubic downsampling and suffers from the
aliasing issue. Both BSRGAN and Real-ESRGAN cannot generate satisfactory
texture details even with the heavy RRDB backbone. This is because these two
methods are trained on pairs with relatively severe degradations so that their
denoising capacity is strengthened yet the detail-generation capacity is limited.
Similar observations can be made on all the four samples in Fig. 3.

The RRDB backbone trained with pixel-wise loss performs well on the first
two samples in generating textures details, yet it cannot be generalized to the
last two samples whose degradations are severe. This is reasonable since all its
training pairs are generated by bicubic downsampling. In addition, the results
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(1) Bicubic

(2) Level-I

(3) Level-II

(4) Real

(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 3. Qualitative comparison of competing methods on images with different degra-
dations. The results of (b-f) are generated by using the officially released models, while
the output of (g) is obtained by re-training the SRResNet backbone with our proposed
degradation model. Better zoom in for details.

of RRDB in the first and third samples are blurry, which is a well-acknowledged
side-effect of pixel-wise loss. By applying perceptual and adversarial losses, ES-
RGAN achieves sharper results yet introduces many visual artifacts due to the
instability of training generative adversarial networks. The ESRGAN also am-
plifies the noise as shown in the second sample. By considering different blur
kernels, IKC can restore rich textures on most images, yet bring overshoot ar-
tifacts when facing unseen kernels in real-world images (the fourth sample). It
also lacks the capacity to remove noise as shown in the second sample.

The results of Real-SRGAN are obtained by re-training the SRResNet on
our proposed degradation space with the same loss as in Real-ESRGAN [29].
It can be observed that due to the insufficient feature representation capacity,
Real-SRGAN cannot perform well on all four samples compared to our DASR.
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(a) N=3

(b) N=9

(c) w/ sigmoid

(d) feature fuse

(e) multiply

(f) DCD

(g) w/ EDSR

(h) DASRforeman.png

Fig. 4. Ablation study. (a) and (b) validate the models with different N ; (c) appends
a sigmoid layer to the weighting module A; (d) conducts classical MoE [52, 53, 57, 66]
where the output of multiple experts are fused; (e) performs dynamic convolution with
a single expert by learning a mapping matrix and multiplying it to the parameters; (f)
conducts dynamic convolution following the work [59]; (g) applies EDSR-M backbone
to DASR; (h) denotes our default DASR model.

In the first three samples, the Real-SRGAN generates messy details or artifacts,
as the light-weighted model limits its capacity to achieve degradation-adaptive
super-resolution. On the last sample which is a real-world image, the reconstruc-
tion of rich details is restricted in Real-SRGAN. In contrast, our proposed DASR
outperforms the others in reconstructing realistic details and inhibiting artifacts,
thanks to the effective degradation-adaptive framework and the joint optimiza-
tion of multiple experts. More visual comparisons can be found in Section 6.4 in
the Appendix.

4.5 Ablation Study

We conduct comprehensive ablation studies on our proposed DASR model by
using real-world images and depict the visual results in Fig. 4.

Effectiveness of N . Models in Figs. 4(a) and (b) evaluate the selection of
N . It can be seen that using 3 experts leads to relatively smooth results, while
models of N = 5 in (h) and N = 9 in (b) enhance the generation of details. As
N = 9 shows similar visual quality to N = 5, we consider that N = 5 is sufficient
to model the proposed degradation space.

Effectiveness of model design. Figs. 4(c) and (d) validate the effectiveness
of our model design. The result in (c) demonstrates that adding a sigmoid layer
to the weighting module A cannot improve the performance. As we mix different
experts in terms of model parameters, there is no need to ensure positive weights
by a sigmoid layer. The experts in Fig. 4(d) are fused following the strategy of
classical MoE [52, 53, 57, 66], where all experts are forwarded and the outputs
are fused. We can see that the result of classical MoE in (d) lacks fine details
compared to (h), yet its computational cost is N times heavier than our DASR.

Effectiveness of different dynamic convolutions. Figs. 4(e) and (f)
compare different dynamic convolutions [41, 59] without introducing many ad-
ditional parameters. While the inference latency and FLOPs are increased, the
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SR result

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Example of user-interactive super-resolution. (a) is the input image with bicubic
upsampling; (b) is the result of DASR where the degradation parameters are estimated
automatically by model P; (c) and (d) are generated by manually increasing and de-
creasing the scale of blur kernel, respectively; (e) and (f) are the super-resolution results
by manually increasing and decreasing the level of noise, respectively.

performance of those methods drops, e.g ., the artifacts generated in (e). We be-
lieve it is the joint optimization of multiple experts and the degradation-adaptive
mixture that make our DASR more effective than other methods.

Generalization to different backbone. Fig. 4(g) applies the EDSR-M
backbone to DASR. The satisfactory perceptual quality of (g) demonstrates the
generalization capacity of our proposed DASR to different backbone networks.

4.6 User-Interactive Super-resolution

One interesting advantage of our DASR over other Real-ISR methods is that
it supports easy user-interactive super-resolution during inference, owing to its
interpretable and compact degradation representation.

We depict an example of user-interactive super-resolution in Fig. 5. As can
be seen, the proposed DASR allows explicit user control to customize the super-
resolution effects. Manually setting larger values to the blur-related parameters
(e.g ., kernel scale) leads to sharper super-resolution results, as shown in Fig. 5(c),
while adjusting the level of noise can flexibly balance between image details and
noise, as shown in Fig. 5(e) and (f). Such an advantage of flexible user control
makes our DASR very attractive in practical Real-ISR tasks.

5 Conclusion

In this paper, we proposed an efficient degradation-adaptive network, namely
DASR, for the real-world image super-resolution (Real-ISR) task. In order to
improve the modeling capacity and flexibility of various degradation levels, we
jointly learned multiple super-resolution experts and adaptively mixed them
into one expert in a degradation-aware manner. The proposed DASR was not
only degradation adaptive but also efficient during inference. Extensive quantita-
tive and qualitative experiments were conducted. The results demonstrated that
DASR not only achieved superior performance on images with a wide range of
degradation levels but also kept good efficiency for easy deployment. In addition,
DASR allowed easy user control for customized super-resolution results.
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6 Appendix

6.1 Detailed Settings of Degradation Modeling

We report the detailed parameter settings of our degradation modeling in Ta-
ble 3. We partition the whole degradation space S into 3 levels [S1, S2, S3],
and randomly select one of them to generate the LR-HR image pairs during
training with a balanced probability of [0.3, 0.3, 0.4]. For the blur operation, we
use isotropic and anisotropic Gaussian kernels with a probability of [0.65, 0.35],
where we set σ1 = σ2 if isotropic blur kernel is specified. In the second degra-
dation stage of S3, following the practice in Real-ESRGAN [29], we skip the
blur operation with a probability of 0.2, and perform sinc kernel filtering with a
probability of 0.8. We finally resize the image to the desired LR size, i.e., 1/4 of
the original size.

For those operations that have more than one mode, e.g ., the resize mode, we
use a one-hot vector to indicate the choice of mode in v. For other parameters,
we normalize each of them by v′ = (v − vmin)/(vmax − vmin), where v, v′, vmin

and vmax indicate the original value, the normalized value, the minimum and
maximum values of the parameter, respectively.

6.2 Details of Training Losses

As discussed in Section 3.3, the total training loss is defined as

Ltotal = Lpixel + λ1Lregression + λ2Lperceptual + λ3Ladversarial,

where the regression loss Lregression has been provided in Eq. (1) of the main pa-
per. For the other three losses, the settings are the same as in Real-ESRGAN [29].
Specifically, the pixel loss is defined as the `1 distance Lpixel = ‖ŷ − y‖1, where
ŷ and y denote the super-resolved image and the ground-truth HR image, re-
spectively. For the perceptual loss Lperceptual, we first extract the {conv1, conv2,
conv3, conv4, conv5} feature maps of ŷ and y by using the pre-trained VGG19
network [67], then calculate the weighted sum of the respective `1 distances be-
tween the feature maps of ŷ and y as the perceptual loss, where the weights
are set to be [0.1, 0.1, 1, 1, 1]. For the adversarial loss Ladversarial, the U-Net
discriminator with spectral normalization is adopted.

6.3 More Sample Images

In Fig. 6, we provide more sample images with different degradation levels in
our datasets, as well as the ground-truth HR images. As can be seen from the
figure, those images can cover a wide range of real-world degradations. The bal-
anced sampling from the three levels during training improves the generalization
capacity of our DASR to real-world images with different degradations.
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6.4 More Qualitative Comparisons

In Fig. 7, we provide more qualitative comparisons of competing methods on
real-world images, while in Figs. 8, 9, 10 and 11, we provide more qualitative
comparisons of competing methods on datasets with bicubic, Level-I, Level-II
and Level-III degradations, respectively. Our models are trained by using the
images in DIV2K, Flickr2K, and OutdoorScene-Training datasets. To further
validate the generalization capability of DASR to different image contents, the
visual comparisons in Figs. 8, 9, 10 and 11 also include images from the Urban100
dataset by using the same degrading strategy as in our main paper. From those
figures, consistent observations to our main paper can be made. Our DASR can
generate more realistic structures and details on different degradations, benefit-
ing from its degradation-adaptive strategy and the joint training and adaptive
mixture of multiple experts.
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Table 3. Detailed parameter settings of the degradation sub-spaces [S1, S2, S3]. Here,
‘-’ indicates that the operation is not activated and the corresponding value in v is
padded with 0; [‘a’, ‘b’, ‘b’] denote the resize modes of [area, bilinear, bicubic]; [‘G’,
‘P’] denote the noise types of [Gaussian, Poisson]; ωc is the cutoff frequency of the
sinc kernel; R-J and J-R indicate the different operating orders of resizing and JPEG
compression; vi denotes the ith value of v.

Level Operation Parameter
Stage 1 Stage 2

Range vi Range vi

S1

Blur

kernel size [2m+ 1] m ∈ [3, 10] v1 - -
standard deviation σ1 [0.2, 0.8] v2 - -
standard deviation σ2 [0.2, 0.8] v3 - -

rotation degree θ [−π, π] v4 - -

Resize
[up, down, keep] [0.1, 0.2, 0.7] - - -

scale factor [0.85, 1.2] v11 - -
resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 - -

Noise

type [‘G’, ‘P’] v21, v22 - -
sigma of Gaussian [1, 10] v19 - -
scale of Poisson [0.05, 0.5] v19 - -
gray probability 0.4 v20 - -

JPEG
quality factor [90, 95] v27 - -

mode of final resize [‘a’, ‘b’, ‘b’] v31 ∼ v33 - -

S2

Blur

kernel size [2m+ 1] m ∈ [3, 10] v1 - -
standard deviation σ1 [0.2, 1.5] v2 - -
standard deviation σ2 [0.2, 1.5] v3 - -

rotation degree θ [−π, π] v4 - -

Resize
[up, down, keep] [0.3, 0.4, 0.3] - - -

scale factor [0.5, 1.2] v11 - -
resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 - -

Noise

type [‘G’, ‘P’] v21, v22 - -
sigma of Gaussian [1, 20] v19 - -
scale of Poisson [0.05, 1.5] v19 - -
gray probability 0.4 v20 - -

JPEG
quality factor [50, 95] v27 - -

mode of final resize [‘a’, ‘b’, ‘b’] v31 ∼ v33 - -

S3

Blur

kernel size [2m+ 1] m ∈ [3, 10] v1 m ∈ [3, 10] v5
standard deviation σ1 [0.2, 3] v2 [0.2, 1.5] v6
standard deviation σ2 [0.2, 3] v3 [0.2, 1.5] v7

rotation degree θ [−π, π] v4 [−π, π] v8
sinc kernel size [2m+ 1] - - m ∈ [3, 10] v9

ωc of sinc kernel - - [π/3, π] v10

Resize
[up, down, keep] [0.2, 0.7, 0.1] - [0.3, 0.4, 0.3] -

scale factor [0.15, 1.5] v11 [0.3, 1.2] v15
resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 [‘a’, ‘b’, ‘b’] v16 ∼ v18

Noise

type [‘G’, ‘P’] v21, v22 [‘G’, ‘P’] v25, v26
sigma of Gaussian [1, 30] v19 [1, 25] v23
scale of Poisson [0.05, 3] v19 [0.05, 2.5] v23
gray probability 0.4 v20 0.4 v24

JPEG
quality factor [30, 95] v27 [30, 95] v28

operating order - - R-J or J-R v29, v30
mode of final resize - - [‘a’, ‘b’, ‘b’] v31 ∼ v33



18 J. Liang et al.

(b) Bicubic (c) Level-I (d) Level-II (e) Level-III(a) HR

Fig. 6. More sample images with different levels of degradations in our constructed
datasets, as well as the ground-truth HR images. Level-I, -II, and -III represent the
samples whose degradations belong to S1, S2, and S3, respectively.
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(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 7. More qualitative comparison of competing methods on real-world images. The
results of (b-f) are generated by using the officially released models, while the output of
(g) is obtained by re-training the SRResNet backbone with our proposed degradation
model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 8. More qualitative comparison of competing methods on images with bicubic
downsampling. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 9. More qualitative comparison of competing methods on images with degradation
of Level-I. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.
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Fig. 10. More qualitative comparison of competing methods on images with degra-
dation of Level-II. The results of (b-f) are generated by using the officially released
models, while the output of (g) is obtained by re-training the SRResNet backbone with
our proposed degradation model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR
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Fig. 11. More qualitative comparison of competing methods on images with degra-
dation of Level-III. The results of (b-f) are generated by using the officially released
models, while the output of (g) is obtained by re-training the SRResNet backbone with
our proposed degradation model. Better zoom in for details.
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