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Abstract

Single image super-resolution (SISR) with generative ad-
versarial networks (GAN) has recently attracted increas-
ing attention due to its potentials to generate rich details.
However, the training of GAN is unstable, and it often in-
troduces many perceptually unpleasant artifacts along with
the generated details. In this paper, we demonstrate that
it is possible to train a GAN-based SISR model which can
stably generate perceptually realistic details while inhibit-
ing visual artifacts. Based on the observation that the
local statistics (e.g., residual variance) of artifact areas
are often different from the areas of perceptually friendly
details, we develop a framework to discriminate between
GAN-generated artifacts and realistic details, and conse-
quently generate an artifact map to regularize and stabi-
lize the model training process. Our proposed locally dis-
criminative learning (LDL) method is simple yet effective,
which can be easily plugged in off-the-shelf SISR meth-
ods and boost their performance. Experiments demonstrate
that LDL outperforms the state-of-the-art GAN based SISR
methods, achieving not only higher reconstruction accuracy
but also superior perceptual quality on both synthetic and
real-world datasets. Codes and models are available at
https://github.com/csjliang/LDL.

1. Introduction
Single image super-resolution (SISR) [6, 13, 14, 19, 20,

30–33, 38, 40, 42, 45, 47, 48], which aims to reconstruct a
high-resolution (HR) image from its low-resolution (LR)
observation, is one hot yet challenging research topic in
low-level computer vision. It has become prevalent to train
deep neural networks (DNNs) for SISR, while many DNN-
based SISR models [2, 6, 27, 37, 48] are trained with pixel-
wise ℓ1 and ℓ2 losses, and/or local window based metrics
(such as SSIM [41]). It is well-known that though high
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Figure 1. Three representative types of SISR regions generated by
ESRGAN [40]. For each example, the left is an LR patch and the
right is its GAN-SR result. Type A patches represent regions that
are easy to super-resolve, e.g., smooth and large-scale structural
areas, where the main structures are preserved in the LR input. In
contrast, patches of type B and type C are with fine-scale details,
which are hard to be faithfully restored due to the signal alias-
ing in the LR inputs. The results of texture-like type B patches
are perceptually realistic despite the pixel-wise differences to the
ground-truth, since the patterns are naturally irregular with weak
priors for observers. However, the results of type C patches exhibit
perceptually unpleasant visual artifacts since the overshoot pixels
and distorted structures are sensitive to human perception.

PSNR and SSIM indices might be induced by these losses,
they can hardly produce rich image details [4, 20].

With the rapid development of generative adversarial
networks (GAN) [9, 15], GAN-based SISR (GAN-SR for
short) has recently attracted significant attention for its po-
tentials to recover sharp images with rich details [20,30,32,
40, 44]. Though great progresses have been achieved, ad-
versarial training is unstable and often introduces unpleas-
ant visual artifacts [20, 44]. As users are mostly expecting
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rich and realistic details in SISR results [5, 12, 28], how to
inhibit the visual artifacts of GAN-SR without affecting the
realistic details becomes a key issue. Unfortunately, details
and artifacts are often entangled in high-frequency compo-
nents of images. As a result, optimizing one of them often
harms the other under existing frameworks [4, 20, 25, 40].

In order to address the above mentioned challenges, we
investigate in-depth the GAN-SR methods and categorize
their results into three typical types of regions, as illustrated
in Figure 1. Specifically, type A patches (e.g., flat sky, long
edges) are easy to reconstruct since they are smooth or con-
tain only large-scale structures. In contrast, it is difficult to
produce high-fidelity SISR results for patches of type B and
type C because they have much fine-scale details and suf-
fer from signal aliasing in the degradation process, where
most high-frequency components are lost. Fortunately, for
texture-like type B patches (e.g., animal fur, tree leaves in
distance), the pixels are randomly distributed so that the dif-
ferences between SR results and ground truth are insensitive
to human perception. Therefore, rich details generated by
GAN-SR methods can lead to better perceptual quality in
these regions. However, patches of type C (e.g., thin twigs,
dense windows in the building) contain many fine-scale reg-
ular structures or sharp transitions among adjacent pixels.
The distorted structures and overshoot pixels generated by
GAN-SR methods can be easily perceived by observers as
unpleasant artifacts.

Based on the above analysis, we can see that to get per-
ceptually realistic SISR results, the visual artifacts in type C
regions should be inhibited, while the realistic details gen-
erated in type A and type B regions should be preserved. To
achieve this goal, we analyze the local statistic of the three
types of GAN-SR regions, and find that the local variance of
residuals between SISR results and ground truth HR images
can serve as an effective feature to distinguish unpleasant
artifacts from realistic details. Accordingly, we construct
a pixel-wise map indicating the probability of each pixel
being artifacts based on the local and patch-level residual
variances. We further refine the discrimination map via a
model ensemble strategy to encourage stable and accurate
optimization direction toward high-fidelity reconstruction.
Based on the refined map, we design a Locally Discrimi-
native Learning (LDL) framework to penalize the artifacts
without affecting realistic details.

To sum up, in this paper we first analyze the GAN-SR
results and the instability of model training. We then pro-
pose to explicitly discriminate visual artifacts from realistic
details, and design an LDL framework to regularize the ad-
versarial training. Our method is simple yet effective, and it
can be easily plugged into off-the-shelf GAN-SR methods.
It provides a novel way to suppress the artifacts in GAN-SR
while generating rich realistic details. We conduct extensive
experiments on synthetic and real-world SISR tasks, and

LDL demonstrates clear improvements against the state-of-
the-arts both quantitatively and qualitatively.

2. Related work
Since the pioneer work of SRCNN [6], which firstly in-

troduces a three-layer convolutional neural network (CNN)
for SISR, a number of CNN based SISR models have been
proposed, which can be roughly divided into signal fidelity-
oriented ones [2, 27, 37, 48] and perceptual quality-oriented
ones [14, 20, 22, 30, 32, 40], depending on the losses and
training strategies employed by them.

Signal fidelity-oriented SISR methods. SISR meth-
ods in this category adopt the pixel-wise distance measures
(such as ℓ2 and ℓ1 losses) and local structural similarity
measures (such as SSIM [41]) to optimize the signal fi-
delity between the SISR outputs and the HR ground-truth.
Since SRCNN [6], researchers have made remarkable pro-
gresses by stacking more convolution layers [18, 19] and
designing more complex building blocks [23, 34] and con-
nections [20, 36, 48]. For instance, benefited from the very
deep network, effective residual connections, and channel
attentions, RCAN [47] achieves superior performance on
reconstruction accuracy (e.g., PSNR). However, due to the
ill-posedness of the SISR problem, optimizing the pixel-
wise losses tends to find a blurry result that is the average
of many possible solutions [4, 30, 32]. The SSIM loss can
preserve better the image local structures but it is hard to
reproduce fine details.

Perceptual quality-oriented SISR methods. To im-
prove the perceptual quality of SISR images, Johnson et
al. [14] proposed a perceptual loss by calculating the dis-
tance between HR and SISR results in the VGG feature
space. To tackle the difficulties of signal fidelity-oriented
methods in reproducing image details, most recent works
have resorted to using the GAN techniques [9] for their ca-
pability to generate desired images by discriminating be-
tween image distributions [8,29,39]. For example, Ledig et
al. [20] proposed SRGAN with adversarial training on top
of the SRResNet generator. To improve the visual qual-
ity, Wang et al. [40] proposed the ESRGAN by introducing
the Residual-in-Residual Dense Block (RRDB) along with
other improvements on adversarial training and perceptual
loss. RRDB has been employed as a standard backbone in
many state-of-the-art GAN-SR methods [25, 38, 45].

Zhang et al. [44] proposed a trainable unfolding network,
termed USRGAN, which integrates the merits of traditional
model-based methods and CNN-based ones. Ma et al. [25]
introduced a gradient guidance via an additional branch in
the network. By alleviating the structural distortion and in-
consistency problem, the proposed SPSR method achieves
leading performance among GAN-SR methods on synthetic
data. Nonetheless, one key issue of all existing GAN-SR
works lies in that they will produce many unpleasant visual
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Figure 2. An illustration of possible optimization directions of
GAN-SR models. The patch in the center is obtained by a pre-
trained SISR model using ℓ1-loss, while the patches in red and
yellow boxes are possible GAN-SR results by adversarial losses.

artifacts due to the instability of adversarial training.
Remarks. As indicated in [4], both signal fidelity-

and perceptual quality-oriented SISR methods fall in a
perception-distortion trade-off; that is, improving either the
perceptual quality or signal fidelity will affect the other un-
der the existing training strategies. Empirical experiences
also tell us that inhibiting the artifacts can limit the gen-
eration of details. In this paper, we propose to regular-
ize the adversarial training by explicitly discriminating the
artifacts from realistic details, which effectively addresses
the dilemma. Recent researches, e.g., BSRGAN [45] and
RealESRGAN [38], have also recognized the significance
of the real-world image SR task. As a plug-and-play mod-
ule, our method can also be easily extended to such chal-
lenging task. The experimental results demonstrated its
high generalization performance in generating realistic de-
tails while inhibiting artifacts.

3. Methodology
3.1. GAN-SR induced visual artifacts

Most of the existing GAN-SR methods [20, 40] are
trained using a weighted combination of three losses:

LGAN = λ1Lrecons + λ2Lpercep + λ3Ladv, (1)

where Lrecons indicates the pixel-wise reconstruction loss
such as ℓ1 and ℓ2 distances, Lpercep is the perceptual
loss [14,20] measuring the feature distance in VGG feature
space and Ladv denotes the adversarial loss [9, 40]. λ1, λ2

and λ3 are balancing parameters, which are usually set to
0.01, 1, 0.005, respectively, as in ESRGAN [40].

According to the pioneer work of SRGAN [20], using
only the Lrecons loss will result in a blurred average of

0
0.25
0.5
0.75
1

𝑰!"
𝑰#"

𝑰$" 𝑰!"
𝑰#"

𝑰$"

𝑰!"%
𝑰#"

𝑰$"%

Type A Type B

Type C𝑰!"& 𝑰!"' 𝑰$"& 𝑰$"'

Figure 3. Toy examples of the GAN-SR results on three types of
regions. The LR patches are obtained by applying 2 × 2 average
pooling with stride 2 on the HR patches. The large-scale struc-
ture in type A patch can be well reproduced with good fidelity
and perceptual quality. Though the pixels in texture-like type B
patch are not faithfully reconstructed, the perceptual quality of the
reconstructed patch is not bad due to the random distribution of
pixels in HR patch. However, for those type C patches, visually
unpleasant artifacts are perceived in the GAN-SR results since the
fine-scale yet regular structures are destroyed.

all possible HR images, while the Ladv loss can push the
SISR solution away from the blurred average, generating
more details. Unfortunately, GAN-SR models also gener-
ate many perceptually-unpleasant artifacts in addition to the
details. An intuitive illustration is shown in Figure 2. Since
SISR is an ill-posed task, one LR input corresponds to many
possible HR counterparts scattering in the high-dimensional
image space. Starting from the blurry solution (the center
patch in Figure 2) generated by an SISR model pre-trained
using only the Lrecons loss, the LGAN loss can update it along
many possible directions, some yielding perceptually pleas-
ant results (in yellow boxes) and some producing unpleasant
ones (in red boxes). This leads to an unstable optimization
process that may generate artifacts along with details.

The above situation can vary among different image re-
gions, as discussed in Figure 1. To better understand how
GAN-SR generates visual artifacts in different areas of an
image, in Figure 3 we show toy examples of the three types
of patches. We see that for type A patch, the large-scale
structure is preserved in its LR version and the HR patch
can be easily reproduced with good fidelity and perceptual
quality. For the texture-like type B patch, though it is not
pixel-wise faithfully reconstructed, the perceptual quality
of the GAN-SR output is not bad. This is mainly because
the pixels in texture-like patches are often randomly dis-
tributed in a relatively small range so that human eyes are
hard to perceive the pixel-wise difference. In contrast, type
C patches have regular and sharp transitions, while the lo-
cal patterns are lost in the LR patch after degradation. The
largely varied and even contradictory HR targets lead to un-
stable adversarial training, and the irregular and unnatural
patterns in the GAN-SR results can be easily perceived by
observers as artifacts.

In Figure 4, we further investigate the training stabil-
ity of GAN-SR methods on different patches, including the
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Figure 4. The stability on the training of different patches by ES-
RGAN [40] and our LDL. The patches of flat sky (type A), animal
fur (type B) and thin twigs (type C) in Figure 1 are used here.
The mean absolute differences (MAD) of intermediate GAN-SR
results between iterations k and k+5000 are plotted.

flat sky (type A), animal fur (type B) and thin twigs (type
C) in Figure 1. We calculate the mean absolute difference
(MAD) of the intermediate GAN-SR outputs at two differ-
ent iterations, i.e., MAD=|I(k)

SR − I
(k+p)
SR |, where I(k)

SR is the
GAN-SR result at iteration k, and we set p to 5000. The
curves of MAD vs. k for ESRGAN [40] are plotted as solid
lines. As can be seen, the training process of type A patch
is stable (small value and variation of MAD). Type B shows
larger variation, indicating higher uncertainty during opti-
mization. Type C has the largest variation and instability,
implying that many possible GAN-SR solutions of type C
are available in a large space, as illustrated in Figure 2.

3.2. Discriminating artifacts from realistic details

According to the investigations in Section 3.1, we should
inhibit the generation of artifacts in type C patches while
preserving the realistic details in type A and B patches. To
achieve this challenging goal, we carefully design a pixel-
wise map to discriminate artifacts from realistic details, as
well as a learning strategy to stabilize the training of GAN-
SR models. The whole procedure of map generation is il-
lustrated in Figure 5 using three patches.

Discrimination of artifacts. Suppose that the resolution
of a full-color SISR image ISR is H ×W × 3, our goal is
to find a pixel-wise map M ∈ RH×W×1, where M(i, j) ∈
[0, 1] indicates the probability of ISR(i, j) being an artifact
pixel. Considering that both the artifacts and details belong
to high-frequency image components, we first calculate the
residual between ground truth image IHR and SISR result
ISR to extract high-frequency components:

R = IHR − ISR. (2)

As shown in the 3rd column of Figure 5, most pixels in
the smooth type A patch have very small residuals. Both
type B and type C patches have large residuals, while the

distribution of residuals in patch B is much more random.
Based on the observation that artifacts usually consist of
overshoot pixel values, we propose to calculate the local
variance of the residual map R as the primary map to indi-
cate artifact pixels:

M(i, j) = var(R(i−n − 1

2
: i+

n − 1

2
, j−n − 1

2
: j+

n − 1

2
),

(3)
where var represents the variance operator and n denotes
the local window size. We empirically set n = 7.

As shown in the 4th column of Figure 5, the primary
map M can effectively detect the artifact pixels in patch C.
However, since the local variance is calculated with a very
small receptive field, it is unstable to discriminate artifacts
from edges and textures. Some pixels in patches A and B
will also have large response, causing wrong punishment
on the generation of realistic details. To address this issue,
we further calculate a stable patch-level variance σ from the
whole residual map R as follows:

σ = (var(R))
1
a , (4)

where (·) 1
a scales the global variance var(R) to an appro-

priate scale. We fix a to 5 throughout our experiments. In
general, type A patches have smaller σ values than type B
and type C patches, while type C patches have the largest σ
values. By using σ to scale the primary map M as σ ·M ,
a more reliable artifact map can be obtained. As shown in
the 5th column of Figure 5, the over-punishment issue on
patches A and B is mostly addressed, while the artifacts in
patch C are still identified.

Stabilization and refinement. Although the map σ ·M
can discriminate the artifacts in different types of patches, it
may still over-penalize the realistic details in patch C, and
slightly penalize the generation of high-fidelity details in
patches A and B, especially at the early training stages. To
alleviate this problem, we further stabilize the training pro-
cess and refine the artifact map.

Specifically, denote by Ψ the GAN-SR model optimized
via gradient decent on-the-fly, we use the exponential mov-
ing average (EMA) technique to temporally ensemble a
more stable model ΨEMA from Ψ as:

Ψ
(k)
EMA = α ·Ψ(k−1)

EMA + (1− α) ·Ψ(k), (5)

where α is the weighting parameter. Compared to Ψ, ΨEMA
is more reliable to alleviate the generation of random arti-
facts. As in prior arts of EMA [16, 17], we set α = 0.999.

With ΨEMA, we can further refine the artifact map σ ·M
to alleviate penalty on generation of realistic details dur-
ing optimization. Denote by ISR1

= Ψ(ILR) and ISR2
=

ΨEMA(ILR) the outputs of two GAN-SR models. Usu-
ally, the output of the ensemble model, i.e., ISR2 , has few
artifacts, while ISR1

may contain more details and arti-
facts simultaneously. We then calculate two residuals map
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Figure 5. Visualization on the generation process of artifact map. ISR, IHR, |R|,M , σ and Mrefine indicate the SISR output of a GAN-SR
method, the ground truth patch, the absolute value of the residual between ISR and IHR, the primary map calculated by Eq. (3), the scaling
factor computed by Eq. (4), and the refined map by Eq. (6), respectively. In the 5th column, the σ values for type A, B and C patches are
0.25, 0.39, 0.67, respectively. The last column shows the locations where |R1| < |R2| with white pixels.

R1 = IHR − ISR1
and R2 = IHR − ISR2

, and refine the
artifact map σ ·M by:

Mrefine(i, j) =

{
0, if |R1(i, j)| < |R2(i, j)|;

σ ·M(i, j), if |R1(i, j)| ≥ |R2(i, j)|.
(6)

That is, the refined map Mrefine will only penalize the pixels
where |R1(i, j)| ≥ |R2(i, j)|. At locations where the resid-
uals of ISR1 are smaller than ISR2 , the model Ψ is updated
towards the correct direction and should not be penalized.
The refined map Mrefine and the location map |R1| < |R2|
are shown in the last two columns of Figure 5. We see
that the locations of fine textures and desirable edges are
removed from the refined artifact map so that the penalty
can be imposed more precisely on the artifact pixels.

3.3. Loss and learning strategy

Given the refined artifact map Mrefine, we propose an ar-
tifact discrimination loss Lartif as follows:

Lartif = ∥Mrefine · (IHR − ISR1)∥1. (7)

The loss Lartif can be easily introduced to the existing GAN-
SR models and the final loss function is:

LLDL = LGAN + βLartif, (8)

where LGAN is defined in Eq. (1) and β is a weighting pa-
rameter. We simply fix β = 1 in all our experiments.

The pipeline of the proposed locally discriminative
learning (LDL) method is shown in Figure 6. The input
ILR is fed into two models, i.e., Ψ and ΨEMA, to output ISR1

EMA of parameters

Ψ

Ψ!"#

𝑰$%

𝑰&%!
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Figure 6. Overall learning pipeline of the proposed LDL method.

and ISR2 , respectively. The artifact map Mrefine is then con-
structed using the ground-truth image IHR, as well as ISR1

and ISR2
. After that, the loss Lartif is calculated based on

IHR, ISR1
and Mrefine. Finally, the model Ψ is optimized

using LLDL, and the parameters of Ψ are temporally ensem-
bled to ΨEMA. This process is iterated until converge.

With the proposed LDL, we train the same RRDB back-
bone [40] and plot the MAD curves of intermediate GAN-
SR outputs in Figure 4 using dash lines. As can be seen,
our LDL method has much better stability than ESRGAN
in model learning, especially for type B and type C patches,
resulting in much smaller MAD and MAD variations.

4. Experimental results
4.1. Experiment setup

Backbones and compared methods. We validate
the effectiveness of the proposed LDL method on top
of three representative backbone networks, i.e., SRRes-
Net [20], RRDB [40] and SwinIR [21], resulting in SR-
ResNet+LDL, RRDB+LDL and SwinIR+LDL. SRResNet
is a light-weight network, and we compare SRResNet+LDL
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Table 1. Quantitative comparison between GAN-SR methods and the proposed LDL. Three groups of comparisons are made based on the
employed backbone networks: SRResNet-like backbone for the first 3 columns, RRDB backbone for the middle 5, and SwinIR backbone
for the last 2. The best results of each group are highlighted in bold. ↑ and ↓ mean that the larger or smaller score is better, respectively.

Metrics Benchmark SFTGAN
[39]

SRGAN
[20]

SRResNet
[20]+LDL

ESRGAN
[40]

USRGAN
[44]

SPSR
[25]

RRDB
[40]+LDL

RRDB
[40]+LDL

SwinIR
[21]+LGAN

SwinIR
[21]+LDL

Training Dataset ImageNet
+ OST

DIV2K DIV2K DF2K +
OST

DF2K DIV2K DIV2K DF2K DF2K DF2K

LPIPS ↓

Set5 0.0800 0.0753 0.0759 0.0758 0.0795 0.0647 0.0670 0.0691 0.0656 0.0655
Set14 0.1313 0.1327 0.1303 0.1241 0.1347 0.1207 0.1207 0.1132 0.1160 0.1091
Manga109 0.0716 0.0707 0.0673 0.0649 0.0630 0.0672 0.0553 0.0544 0.0542 0.0469
General100 0.0947 0.0964 0.0898 0.0879 0.0937 0.0862 0.0790 0.0796 0.0796 0.0740
Urban100 0.1343 0.1439 0.1330 0.1229 0.1330 0.1184 0.1096 0.1084 0.1077 0.1021
DIV2K100 0.1331 0.1257 0.1172 0.1154 0.1325 0.1099 0.1011 0.0999 0.1038 0.0944

DISTS ↓

Set5 0.1085 0.1003 0.1010 0.0949 0.1045 0.0921 0.0917 0.0919 0.0930 0.0899
Set14 0.1133 0.1067 0.1016 0.0951 0.0997 0.0920 0.0935 0.0866 0.0930 0.0869
Manga109 0.0646 0.0557 0.0523 0.0471 0.0471 0.0463 0.0404 0.0355 0.0365 0.0315
General100 0.0992 0.0982 0.0939 0.0874 0.0931 0.0884 0.0827 0.0801 0.0835 0.0794
Urban100 0.1062 0.1081 0.0989 0.0880 0.0975 0.0849 0.0822 0.0793 0.0835 0.0800
DIV2K100 0.0736 0.0663 0.0624 0.0593 0.0645 0.0546 0.0528 0.0526 0.0531 0.0507

FID ↓

Set5 39.261 31.507 27.542 27.215 37.006 30.904 25.288 24.803 35.401 27.955
Set14 60.493 63.945 52.080 54.933 55.635 53.867 49.577 43.454 48.910 46.057
Manga109 21.464 11.948 12.652 11.552 10.658 10.662 9.855 10.161 9.703 8.680
General100 36.845 33.868 32.737 29.843 32.959 30.159 27.506 27.211 27.557 25.304
Urban100 21.370 22.162 21.512 20.345 21.555 18.672 17.758 16.351 17.555 16.282
DIV2K100 18.183 13.922 14.823 13.557 14.031 13.754 12.145 12.121 12.736 12.075

PSNR ↑

Set5 30.057 29.920 30.527 30.438 30.910 30.397 30.985 31.033 30.873 31.028
Set14 26.743 26.839 27.278 26.594 27.405 26.860 27.491 27.228 27.282 27.526
Manga109 28.167 28.110 28.664 28.413 28.753 28.561 29.407 29.620 29.345 30.143
General100 29.159 29.327 29.775 29.425 30.001 29.424 30.232 30.289 30.104 30.441
Urban100 24.338 24.410 24.745 24.365 24.891 24.804 25.498 25.459 25.736 26.231
DIV2K100 28.085 28.165 28.602 28.175 28.787 28.182 28.951 28.819 28.784 29.117

SSIM ↑

Set5 0.8483 0.8478 0.8570 0.8523 0.8657 0.8443 0.8626 0.8611 0.8655 0.8611
Set14 0.7175 0.7252 0.7366 0.7144 0.7486 0.7254 0.7476 0.7358 0.7407 0.7478
Manga109 0.8562 0.8632 0.8702 0.8595 0.8717 0.8590 0.8746 0.8734 0.8796 0.8880
General100 0.8060 0.8074 0.8164 0.8095 0.8241 0.8091 0.8277 0.8280 0.8305 0.8347
Urban100 0.7235 0.7302 0.7409 0.7341 0.7503 0.7474 0.7673 0.7661 0.7786 0.7918
DIV2K100 0.7707 0.7745 0.7855 0.7759 0.7941 0.7720 0.7951 0.7897 0.7911 0.8011

against SRGAN [20] and SFTGAN [39], which have com-
parable number of parameters. RRDB is widely used
in recent GAN-SR methods [25, 40, 44] for its competi-
tive performance. We compare RRDB+LDL against ES-
RGAN [40], USRGAN [44] and SPSR [25], which all use
RRDB as backbone. Very recently, SwinIR has reported ex-
cellent SISR performance by using the Swin Transformer
architecture [24]. We also train SwinIR with the LLDL
and LGAN (SwinIR+LGAN) losses, respectively, and com-
pare their performance. We further validate LDL for real-
world SISR by applying LDL to RealESRGAN [38], and
compare the obtained RealESRGAN+LDL model with both
RealESRGAN and BSRGAN [45] models.

Training datasets and settings. Following prior
arts [20,25,40], we conduct experiments with a scaling fac-
tor of 4× on both synthetic (downsampled using MATLAB
bicubic kernel) and real-world experiments. We also report
2× GAN-SR results on synthetic data in the supplemen-
tary materials. We use the same data augmentation, dis-
criminator and optimizer settings as in ESRGAN [40]. We
train our model on either DIV2K [1] (800 images) or DF2K
(3450 images) dataset [23, 35], and the resolution of HR
patches is 128 × 128. We implement the experiments on

4 NVIDIA GTX 2080Ti GPUs with PyTorch and the batch
size is 16 per GPU. We initialize the generator with a pre-
trained fidelity-oriented model, and calculate the perceptual
loss as in [38] for both synthetic and real-world settings.
The learning rate is 1e−4 and the number of training itera-
tion is 300k.

Evaluation benchmarks and metrics. We employ 6
benchmarks for evaluation, including Set5 [3], Set14 [43],
Manga109 [26], General100 [7], Urban100 [11] and
DIV2K100 [1]. We compare the GAN-SR results in terms
of both perceptual quality and reconstruction accuracy. For
the former, we employ LPIPS [46], DISTS [5] and FID [10]
as metrics. LPIPS and DISTS have been validated effective
on evaluating GAN-SR results [12], and FID is widely used
to evaluate the image perceptual quality in image genera-
tion tasks [16]. For the latter, we compute PSNR and SSIM
indices on the Y channel in the YCbCr space.

4.2. Comparison with state-of-the-arts

Quantitative comparison. Table 1 compares quantita-
tively the state-of-the-art GAN-SR methods and our LDL.
We can see that our proposed LDL scheme improves both
the perceptual quality (LPIPS, DISTS, FID) and reconstruc-
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(a) HR (b) Bicubic (c) ESRGAN (d) USRGAN (e) SPSR (f) RRDB+LDL (DF2K)

Figure 7. Visual comparison (better zoom-in on screen) to state-of-the-art GAN-SR methods that use RRDB [40] as backbone, including
ESRGAN [40], USRGAN [44], SPSR [25] and our RRDB+LDL. As can be seen, our method has clear advantages in reconstructing
realistic details and inhibiting artifacts. More visual comparisons can be found in the supplementary materials.

tion accuracy (PSNR, SSIM) on most benchmarks under all
the three backbones, i.e., SRResNet, RRDB and SwinIR.

Specifically, for the three light-weight models, SRRes-
Net+LDL outperforms SFTGAN and SRGAN on most
benchmarks in terms of those perceptual quality metrics
LPIPS, DISTS and FID, and it outperforms SFTGAN and
SRGAN on all benchmarks in terms reconstruction accu-
racy, e.g., PSNR +0.3 ∼ 0.5dB and SSIM +0.01 over the
second best method, respectively.

For the CNN based backbone RRDB, we train the GAN-
SR models on DIV2K and DF2K, respectively, to be con-
sistent with the employed competing models. We can see
that among the three competing methods, SPSR performs
the best in terms of perceptual quality metrics since it bene-
fits from the additional network branch to restore the gradi-
ent map of images. By explicitly discriminating artifacts
and regularizing the adversarial training, LDL achieves
improvements against SPSR, e.g., LPIPS from 0.1099 to
0.1011 (about 8%) on DIV2K validation set. USRGAN
achieves the best reconstruction accuracy among the three
competing methods since it integrates learning-based and
model-based strategies. Compared to the USRGAN, LDL

not only achieves much better reconstruction accuracy on
all benchmarks, but also improves the perceptual indexes.
This validates that LDL can simultaneously inhibit the vi-
sual artifacts and generate more details with high-fidelity.

For the transformer-based backbone SwinIR, we see
that SwinIR+LGAN outperforms the CNN based methods
on most benchmarks in terms of both perceptual qual-
ity and reconstruction accuracy, demonstrating the poten-
tials of transformer-based architecture for GAN-SR. As ex-
pected, SwinIR+LDL further improves SwinIR+LGAN on
most benchmarks, demonstrating the generalization capac-
ity of LDL on different network architectures.

Qualitative comparison. Figure 7 presents some visual
comparisons among the GAN-SR methods using the RRDB
backbone. Similar conclusions to the quantitative compar-
isons can be drawn. LDL generates much less visual ar-
tifacts compared to ESRGAN, USRGAN and SPSR, espe-
cially on regions with fine-scale aliasing structures. In addi-
tion, by regularizing the adversarial training process, LDL
is able to reconstruct more details with high fidelity, such as
the areas with regular patterns (e.g., the lines on windows
and the grid on bridge). These improvements make LDL a
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(a) Bicubic (b) BSRGAN (c) RealESRGAN (d) RealESRGAN+LDL

Figure 8. Visual comparison (better zoom-in on screen) to state-of-the-art real-world SISR methods, including BSRGAN [45] and
RealESRGAN [38] . The training setting of RealESRGAN+LDL is the same as RealESRGAN except for the proposed LLDL loss. More
visual comparisons of different backbones can be found in the supplementary materials.

Table 2. Ablation study on the different components of the pro-
posed LDL method. Results are obtained by RRDB+LDL trained
on DF2K and evaluated on DIV2K validation set. ✓ denotes that
the corresponding operation is used.

# M σ ·M Mrefine ΨEMA LPIPS PSNR

1 0.1154 28.175
2 ✓ 0.1020 28.740
3 ✓ 0.1006 28.678
4 ✓ 0.1001 28.761
5 ✓ ✓ 0.0999 28.819

practical GAN-SR solution for image quality enhancement.

4.3. Applications to real-world SISR

To demonstrate the generalization capability of the pro-
posed LDL, we also apply it to the real-world SISR task.
Compared to SISR on synthetic LR images, SISR on real-
world LR images faces unknown and much more compli-
cated degradation [45]. We introduce the Lartif loss to the
RealESRGAN method [38] and keep all other settings un-
changed to train our RealESRGAN+LDL model. Since
there is no ground-truth, we show qualitative comparisons
with RealESRGAN and BSRGAN in Figure 8. As can be
seen in the area of dense windows, RealESRGAN intro-
duces unpleasant artifacts, while BSRGAN produces rela-
tively smooth structures. In contrast, our LDL suppresses
the generation of artifacts and encourages sharp details. In
the area of twigs, the proposed LDL improves the genera-
tion of fine details, benefiting from the explicit and accurate
discrimination between artifacts and realistic details.

4.4. Ablation study

We conduct ablation studies to investigate the roles of
major components in our LDL method, including the pri-
mary artifact map M , the globally scaled map σ · M in
Eq. (4), the refined map Mrefine in Eq. (6) and the EMA
model ΨEMA. Results are reported in Table 2. #1 gives the

baseline performance when none of the above operations is
used. By introducing M in #2, we can observe a clear per-
formance gain in both perceptual quality and reconstruction
accuracy. This demonstrates the effectiveness of explicitly
discriminating and penalizing the visual artifacts in GAN-
SR. The usage of σ · M in #3 and Mrefine in #4 each fur-
ther improves the performance. Finally, by using the stable
EMA model ΨEMA during testing in #5, we achieve more
performance gain as expected.

4.5. Limitations

Although the proposed LDL is effective in improving
both the perceptual quality and reconstruction accuracy of
SISR outputs, it still has some limitations in discriminating
the visual artifacts in regions suffering from heavy aliasing.
Take the last row of Figure 7 for example, there still remain
some artifacts around the dense windows in our result. In
this paper, we discussed how the artifacts are generated by
GAN-SR methods and proposed a simple attempt to tackle
this problem, while we believe there exist more effective
designs for artifacts discrimination and details generation.

5. Conclusion
In this paper, we analyzed how the visual artifacts were

generated in the GAN-based SISR methods, and proposed
a locally discriminative learning (LDL) strategy to address
this issue. A framework to discriminate visual artifacts from
realistic details during the GAN-SR model training process
was carefully designed, and an artifact map was generated
to explicitly penalize the artifacts without sacrificing the
realistic details. The proposed LDL method can be eas-
ily plugged into different off-the-shelf GAN-SR models for
both synthetic and real-world SISR tasks. Extensive exper-
iments on the widely used datasets demonstrated that LDL
outperforms the existing GAN-SR methods both quantita-
tively and qualitatively.
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