ECCV 2018 Sub-GAN: An Unsupervised Generative Model via Subspaces Jie Liang¹, Jufeng Yang¹, Hsin-Ying Lee², Kai Wang¹, Ming-Hsuan Yang^{2,3} **European Conference** on Computer Vision ¹ Nankai University ² University of California, Merced ³ Google Cloud Al

8 – 14 September 2018 | Munich, Germany

Problems

Clusterer:

Problems to be solved in this paper:

- 1. Disentangling the low-dimensional subspaces of the
- 2. Generating diverse samples without any supervision

Main Idea

1. To disentangle the low-dimensional subspaces

Random vector

The Coefficient Matrix in Subspace Clustering is block-diagonal. Each entry reflects the similarity between two samples.

Interaction between G and C. Both modules are

improved.

Generator

2. To control the diversity of generated samples without supervision

Latent code of the generator

Subspace embedding Predicted label

Eigenvectors of the Laplacian Matrix

Homepage: http://liangjie.xyz; http://cv.nankai.edu.cn/ Email: liang27jie@gmail.com

1. Self-Representation Optimization:

$$\begin{split} \min_{C} \|X - XC\|_{2}^{2} + \lambda \|C\|_{1}, \quad s.t. \operatorname{diag}(C) &= 0\\ \text{Data samples} \quad \text{Coefficient Matrix}\\ 2. \operatorname{Eigenvectors} \text{ of the Laplacian matrix:}\\ & [e_{1}, e_{2}, \cdots, e_{K}] = \operatorname{eig}(M) \end{split}$$
Each of the K eigenvectors of the set of the Laplacian matrix:
$$[e_{1}, e_{2}, \cdots, e_{K}] = \operatorname{eig}(M)$$

Generator: The latent code is composed of three vectors: $l = z \oplus e \oplus \hat{y}.$

Discriminator: Distinguish between real and fake samples; 1) 2) Classify the inputs into subspaces.

Minimax objective: $\min_{G,C} \max_{D} \mathcal{L}(D,G,C),$ $\mathcal{L}(D, G, C) = \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{S}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{l} \sim p_{\boldsymbol{L}}(\boldsymbol{l})}[\log(1 - D(G(\boldsymbol{l})))]$ $+ \operatorname{KL}(\boldsymbol{Q}_{\boldsymbol{S}} || \boldsymbol{P}_{\boldsymbol{S}}).$

Experiments

Methods			MNIST					CIFAR								
			= 10	K = 16 H		K = 20	K =	10	K = 16 K		= 20		Unsupervised			
K-means		53	53.49		60.36		42.6	42.62		5	1.02		clustering			
$\begin{array}{c} \text{SSC} \ [4] \\ \text{LSB} \ [46] \end{array}$		62 66	62.71		$66.82 \\ 70.21$		50.3 53.9	31 97	$52.77 \\ 55.80$	5	3.98 9.24		performance			
$\frac{\text{LOR}}{\text{SMR}} \begin{bmatrix} 47 \end{bmatrix}$		73	.39	81.27		83.63	56.2	56.24		6	2.73	· · · · · · · · · · · · · · · · · · ·	ladiustad			
NSN $[48]$		68 1 76	.75	$71.04 \\ 79.25$		73.67	52.2	29 21	56.55	5	$9.03 \\ 7.84$		(dajusted			
ORGEN [31]		71	70.33 71.04		74.07		51.2 52.2	29	55.61	5	8.08		cluste	ring		
iPursuit [49]		61	.35	64.28		68.84 59.2 83.02 61.0		21	62.53	6	5.66		accura	acv) w	ith	
CatGAN [50]		84 80	80.21		84.92		67.4	12 12	$\begin{array}{c} 65.29 \\ 67.85 \end{array}$	6	8.76		diffor	ont K's		
InfoGAN [29]		70	.63	73.77		78.69 71 90.81 79		02 73.64 05 81.35		74.07		Ľ	ujjerent k s.			
Sub-GAN		85	.32	90.36		90.81	78.8	78.95		82.44		-				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
5	7	Б	0	9	l	3	0	6	a	3	9	8	>	م	1	
-)	٨	^	0	,	Ę,	0	ム	J	2	0	7		•	0	
ግ	- 1	9	o	ч	L	1	U	6	3	9	7	ŏ	ð	2	/	
5	2	6	\bigcirc	9	4	3	0	6	Q	3	4	8	>	S	2	
~	_				•	-	×	7)	· · ·	0	0	\leq	$\dot{\sim}$	
5	2	6	0	9	1	7	0	6	X	3	9	8	J	Э	2	
5	7	6	0	۵	1	Э	Λ	6	2	2	4	X)	9	1	
`	~	v	-					0)	1	0	1	5	/	
	fat vs thin w/ point vs w/o point															
4	┝┶			W/O CII	cle vs	w/ circle	è									
	The Sub-GAN can discover multiple hidden attributes of the data.															
	The diversity of generation can be controlled by the given number of clusters.															
Dataset	ts Rea	al C	GAN [2]	IGAN	J [43] I	WGAN	[44] DCC	GAN [45] InfoGA	N [29] S	ub-GAN		livere	itu coo	****	
MNIST	MNIST 2.96		0.92	1.81		1.78		1.63	2.11		2.36	- 1	Diversity scores			
CIFAR	3.2	1	1.02	2.2	20	2.03		1.95	2.48	3	2.72		vith K	= 10.		
Clust	Clustering		Refinen	ment in D		1^{st} :	Epoch	:	20^{th} Ep	och	och 40^{th}		h Last Epoch			
Crust	crustering		W/o			75.23 77 19			82.96 82.45		83.11		83.	.87		
асси	iracy.						1.14	.12 83.45 6				54.24 85.32				
							Some	wrong	lv gro	uped	using	globa	l simil	arity.	>	
		_				ļ	Rofino	tho a	ssiann	nont i	n D ha	sed o	n tha	similar	ritv	
Co	n	- 1		ic	n	<u> </u>	c		33181111			Scu O	i the	Smina	ity	
LU			U J	L		(or sam	pies I	niocal	patch	ies.					
								<u> </u>			_					
1. \	We p	orese	nt a	joint	uns	uper	lised	tram	newor	k to	simu	lltane	eously	y leai	n th	
9	subsp	aces	of th	ne am	nbie n	t spa	ce an	d gei	nerati	ng in	stanc	es ac	cordi	nglv.	wher	

- both tasks are mutually optimized;
- informative visual attributes.

'**ठ' У**

2. We address the mode collapse problem by specifying the number of distinct subspaces, from which we generate meaningful and diverse images with