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Subspace Clustering via Good Neighbors
Jufeng Yang, Jie Liang, Kai Wang, Ming-Hsuan Yang

Abstract—Finding the informative clusters of a high-dimensional dataset is at the core of numerous applications in computer vision,
where spectral based subspace clustering algorithm is arguably the most widely-studied methods due to its empirical performance and
provable guarantees under various assumptions. Such algorithms first compute a linear representation for each sample based on a
dictionary, and construct an affinity graph for spectral clustering. It is well-known that sparsity and connectivity of the affinity graph play
important rules for effective subspace clustering. However, it is difficult to simultaneously optimize both factor due to their conflicting
nature, and most existing methods are designed to deal with only one factor. In this paper, we propose an algorithm to optimize both
sparsity and connectivity by finding good neighbors which induce key connections among samples within a subspace. First, an initial
coefficient matrix is generated from the input dataset. For each sample, we find its good neighbors which not only have large coefficients
but are strongly connected to each other. We reassign the coefficients of good neighbors and eliminate other entries to generate a
new coefficient matrix, which can be used by spectral clustering methods. Both theoretical and empirical results show that few good
neighbors obtained by the proposed algorithm can recover the subspace effectively, and the post-processing module of finding good
neighbors can be complementary to most of the subspace clustering algorithms. Experiments on five benchmark datasets show that the
proposed algorithm performs favorably against the state-of-the-art methods in terms of accuracy with a negligible increase in speed.

Index Terms—Spectral based subspace clustering, good neighbors, sparsity, graph connectivity.
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1 INTRODUCTION

M ODELING high-dimensional data has been one of the most
critical issues in computer vision. As high dimensional data

usually distribute in multiple low-dimensional subspaces whose
structures can be extracted and exploited, numerous subspace clus-
tering algorithms [1]–[5] based on iterative optimization, algebraic
operators, statistical analysis and spectral clustering [6] have been
developed in the literature to model the data points by a union of
low dimensional subspaces. This paper develops a complementary
module for the spectral based subspace clustering methods.

Let xi (1 6 i 6 N) be the representation of the i-th sample
in the data matrix X ∈ RD×N where D denotes the dimension
of each sample and N is the number of samples. All samples are
assumed to lie in one ofK subspaces {Si}Ki=1 with the number of
samples {ni}Ki=1 and the intrinsic rank {di}Ki=1 where ni > di.
Most recent subspace clustering algorithms [1], [6] are based on
the assumption that the K subspaces are independent, and thus
the samples from different subspaces can be grouped into different
clusters.

The key step of spectral based subspace clustering methods is
to compute the coefficient matrix Z by solving an optimization
problem of the form:

min
Z

L(XZ,X) + λ‖Z‖ξ, (1)

where L(·, ·) : RN×N → R+ denotes the loss function, λ is
the trade-off parameter, and ‖·‖ξ denotes the regularization term
where different ξ’s lead to `0, `1, `2, `∞ or the nuclear norm [6]–
[9]. On one hand, the coefficient matrix Z can be interpreted
as a new representation of X , i.e., each column zi represents
the sample xi in terms of other samples in X . It induces richer
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correlations than the original space due to the regularization pro-
cess via constraints on sparsity, subspace-preserving property and
connectivity within each subspace [10] (see Section 3.2 and 3.3).
On the other hand, another interpretation for Z is to consider
it as an “correlation matrix”, where zij reflects the similarity
of samples xi and xj . Therefore, from the permuted Z certain
block-diagonal structure [11] can be extracted when samples lie
on a union of linear subspaces. Spectral clustering methods [12]
can then be applied to form a low-dimension embedding of the
correlation matrix Z, on which groups of data can be formed
using the K-means method.

It is well-known that the `2 and nuclear norm based regu-
larizations lead to the dense coefficient matrices [13]. Although
the connectivity within subspaces is guaranteed, the coefficients
of the inter-subspaces are usually non-zero. Thus, the subspace-
preserving property, i.e., zij = 0 for all xi ∈ S and xj /∈ S,
is not satisfied [14] (see Section 3.2). In contrast, the `0 and `1
norms lead to a sparse Z [13]. While the sparsity regularizations
enforce the subspace-preserving properties of a data matrix, the
connectivity within each subspace cannot be guaranteed [15].

Spectral clustering [12] can be considered as a segmentation
process on an affinity graph G with N vertices, where each sample
in X denotes a vertex and the weights of the edges are derived
from Z [16]. Hence, the clustering performance relies on not only
the sparsity of the inter-subspace connections but also the con-
nectivity among intra-subspace samples since the segmentation in
subspace clustering is based on finding the connected components
of G [15]. To optimize both properties, several recent algorithms
use the mixed norm for the regularization term in (1), e.g., trace
Lasso ‖Xdiag(Z)‖∗ [14] and elastic net [13], to interpolate
between the `1 and `2 norms adaptively. Nevertheless, these
schemes do not perform consistently well on different applications
depending on whether good subspace structures among data points
can be identified.

For clustering, it is more efficient and effective to exploit the
connections in the projected space Z rather than on the data
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Fig. 1. Main steps of the proposed FGNSC algorithm. From the input image dataset I, we generate the data matrix X, each column xi in X
represents an input image. First, we compute (7) on X for the initial coefficient matrix Z. Using Algorithm 1 with Z, we obtain the matrix of good
neighbors N . Then, Z∗ is generated by assigning new coefficients to the good neighbors and eliminating the other values. Thus Z∗ maintains both
sparsity and grouping effect as it has few non-zero elements yet has strong connections. Finally we implement the classic spectral clustering for the
ultimate segmentation result L. (a) Calculating (1). (b) Finding good neighbors as shown in Algorithm 1. (c) Generating Z∗ by computing (15). (d)
Conducting the spectral clustering.

space X [17], [18]. As shown in [19], the representations based
on linear projections with different regularizations (e.g., `1, `2,
`∞ and nuclear norms) preserve the property of intra-subspace
projection dominance (IPD), i.e., the coefficients for the intra-
subspace points are larger than those over inter-subspace points.
However, simply preserving larger coefficients of Z does not
guarantee the connectivity of each subspace [15], [20]. In this
work, we preserve the key connections introduced by the proposed
good neighbors to guarantee the latent connectivity with as few
connections as possible. For each sample xi, a good neighbor
xj satisfies the following two conditions. First, the coefficient
zij ∈ maxγ(zi) where maxγ(·) contains the top γ values of
the vector. Second, xj , together with other µ samples and xi,
form a connected path where the direct connection between xp
and xq requires zpq ∈ maxγ(zp). We show that preserving
the connections among good neighbors leads to the subspace-
preserving property and the connectivity within each subspace,
thereby facilitating effective subspace clustering [20].

In this paper, we propose an algorithm for finding good
neighbors (FGN) which can be applied to existing subspace
clustering (SC) methods. Figure 1 shows the main steps of the
proposed finding good neighbors for subspace clustering (FGNSC)
approach. We first generate the initial coefficient matrix Z by
an off-the-shelf grouping algorithm which preserves invariability
of the projection. That is, when two data points are close, the
corresponding coefficients should be close, i.e., ‖xi − xj‖2→0
⇒ ‖zi − zj‖2→0. Next, we find good neighbors for each xi
which induce the key connections within subspace by exploiting
Z. Given the collection of good neighbors, we optimize the
coefficient matrix Z for Z∗. Concretely, if xj is not a good
neighbor of xi, we set z∗ij = 0. Otherwise, we compute z∗ij
based on the original coefficients. As such, we obtain a new sparse
and subspace-preserving coefficient matrix Z∗, and theoretically
prove that the graph constructed from Z∗ has satisfactory connec-
tivity. Similar to the existing methods [6], [21]–[23], the spectral
clustering algorithm [12] is used in the last step for segmentation.

The contributions of this work are summarized as follows:

• We find good neighbors for each sample from the coef-
ficient matrix Z, and define a new metric Ne to evalu-
ate the neighborhood matrix. We theoretically prove the
subspace-preserving property of Z∗ and connectivity of

the corresponding graph G.
• Based on the good neighbor relationship, we propose the

FGNSC algorithm which can be integrated with most sub-
space clustering methods. In contrast to existing methods
that are designed to maintain one property, the proposed
method preserves both the sparsity and connectivity prop-
erties.

• We demonstrate the robustness of the FGNSC while han-
dling the data with different assumptions and estimating
the number of clusters. Experimental results on five bench-
marks demonstrate that the FGNSC algorithm performs
favorably against the state-of-the-art methods.

2 RELATED WORK

Data clustering has been extensively studied in the past
decades [24]–[28]. Among which, spectral based subspace cluster-
ing methods [18], [29]–[31] attract much attention due to promis-
ing performance and theoretical guarantees. The main difference
among subspace clustering algorithms lies in the optimization
process which learns the coefficient matrix Z with different
properties, i.e., sparsity and connectivity, based on different as-
sumptions. While some schemes exploit sparsity by applying `1
or `0 minimization [32], [33] in (1), other approaches show strong
connectivity with a dense coefficient matrix using `2 or nuclear
regularization [10], [34], [35]. Closely related to this work are the
methods that aim to bridge the gap between both properties [13],
[14], [20] using mixed norms. Recently, various post-processing
methods [19], [36] are proposed to further enhance the sparsity of
Z, but lack the guarantee of the connectivity.

2.1 Sparsity
Elhamifar and Vidal [1] propose the sparse representation based
on `1 optimization as

min
Z
‖X −XZ‖22 + λ‖Z‖1 s.t. diag(Z) = 0. (2)

The obtained coefficient matrix Z recovers a sparse subspace
representation but may not satisfy the graph connectivity if the
dimension of the subspace is greater than three [15].

The `0 based subspace clustering methods aim to compute
a sparse and subspace-preserving representation for each data
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samples. Yang et al. [7] present a sparse clustering method
with a regularizer based on the `0 norm by using the proximal
gradient descent method. Numerous alternative methods have been
proposed for `0 minimization while avoiding the non-convex
problems, e.g., orthogonal matching pursuit [37] and nearest
subspace neighbor [33]. The scalable sparse subspace clustering
by orthogonal matching pursuit (SSC-OMP) method [38] solves
the following problem greedily:

min
Z
‖X −XZ‖22 s.t. ‖Z‖0 6 γ. (3)

Specifically, it compares elements in each column of XX> to
determine which γ positions of zi should be non-zero and assigns
the value which satisfies xi = Xzi. However, this general
pairwise relationship does not reflect the sample correlation well
especially for data pairs in the intersection of subspaces [39].
As a result, the γ positions may be incorrectly assigned and the
connectivity within each subspace cannot be guaranteed.

2.2 Connectivity
An excessively sparse Z leads to unsatisfied clustering results if
the non-zero elements do not contain sufficient correlations for
the connectivity within each subspace [15]. As such, numerous
methods have been developed for preserving more correlation
information and less sparsity [11], [40]–[43].

Low-rank clustering methods [44]–[48] solve the optimiza-
tion problem minZ‖X −XZ‖2,1 + λ‖Z‖∗ with the aim of
generating a block diagonal solution with dense connections.
However, the nuclear norm ‖·‖∗ l does not enforce subset selection
well when noise exists, and Z is too dense to be an efficient
representation. In [49], the least squares regression (LSR) method
models the highly correlated data by minimizing the Frobenius

norm of Z, i.e., ‖Z‖F = (
∑N
i=1

∑N
j=1Z

2
ij)

1/2
. The smooth

representation (SMR) [50] scheme emphasizes the invariability of
the projection by solving the following optimization problem:

min
Z

α‖X −XZ‖2F + tr(ZL̃Z>), (4)

where L̃ is the enforced Laplacian matrix and tr(·) denotes the
trace of the matrix. As LSR and SMR methods lack sparsity, the
dense coefficient matrixZ retains the connections of inter-clusters
which affects the clustering results.

2.3 Bridging the Gap in Optimization Model
As both sparsity and connectivity properties play important roles
in spectral clustering, several methods have been developed to
address two issues in one model [20], [51]–[53].

In [54], Elhamifar and Vidal introduce a tradeoff between
sparsity and connectivity by optimizing

min
Z
‖Z‖1 + λ‖Z‖r,1. (5)

Here, minimizing ‖Z‖r,1 ,
∑N
i=1‖zi‖2 forces to select varying

samples in sparse representations where zi indicates the i-th row
of Z. Recently, You et al. [13] propose to balance the subspace-
preserving and connectivity properties using the elastic net regu-
larization which is defined as λ‖z‖1+ 1−λ

2 ‖z‖
2
2. Both theoretical

justifications and geometric interpretation of the trade-off between
subspace-preserving and the connectivity are presented [13] .
Similarly, the correlation adaptive subspace segmentation method
proposed by Lu et al. [14] takes data correlation into account by

using the mixed norm of trace Lasso, i.e., ‖Xdiag(Z)‖∗, which
adaptively interpolates between the `1 norm and the `2 norm of
Z. Nevertheless, the structure of the data correlations depends on
the data matrix X , and the norm ‖Xdiag(Z)‖∗ is not effective
for structure selection. Therefore, this method does not perform
consistently well on different applications.

2.4 Post-Processing
For numerous vision tasks, subspaces can be dense and a sample
xi can lie on the intersection of the subspaces [?]. Therefore,
directly optimizing on the data space may be ineffective for
capturing the subspace structure of samples, especially for the
optimization scheme [13] which jointly optimizes the sparsity
and the connectivity properties. Recently, several post-processing
modules are proposed to enhance the performance on the projected
space Z [18], [55].

The L2-graph method proposed by Peng et al. [19] pre-
serves the top γ values of each zi according to the property of
intra-subspace projection dominance. Although the sparsity and
subspace-preserving properties can be guaranteed, some samples
in S may be assigned to other subspaces due to the lack of
connections. Similarly, the reweighed space subspace clustering
(RSSC) method [36] approximates the `0 norm minimization
problem by using the `1 norm and reducing the penalty on large
coefficients. It learns a weight matrix W form Z iteratively for
the penalty where each element in the k-th iteration is defined
as wkij = (|zkij | + ε)−1. While the RSSC method improves the
sparsity by the close relaxation of the `0 norm, the affinity of
samples from one subspace may not be a connected graph. In our
work, by preserving the connections over good neighbors which
not only retain high correlations but also induce key connections
among samples within each subspace, the proposed FGNSC algo-
rithm ensures the latent connectivity among each subspace while
satisfying the subspace-preserving property.

3 PRELIMINARIES AND PROBLEM STATEMENT

For presentation clarify, we first summarize the notations used
in the proposed algorithm in this section. We then introduce
the spectral based subspace clustering algorithm which can be
considered as an optimization or graph segmentation problem.
Finally, we show how the proposed method improves the sparsity
of the coefficient matrix while preserves both the connectivity and
the subspace-preserving properties for clustering.

3.1 Notations
Each matrix is represented with a bold capital symbols, e.g.,
Z denotes the correlation matrix derived from (1); the columns
of a matrix are denoted as bold lowercase letter with different
subscripts, e.g., zi denotes the i-th column of Z; and the entries
of a matrix are represented with lowercase letter with double
subscripts, e.g., zij denotes the (i, j)-th entry of Z. We use Greek
letter for representing the hyper-parameters in the algorithm,
such as η, γ, and µ. Furthermore, we use calligraphy fonts to
denote discrete structures or , e.g., S for the subspace, G for the
undirected graph and N for the good neighbors.

We use two forms of the subscripts for vectors and matrices.
The first one includes the normal lowercase letters which indicate
the successive position of entries directly, e.g., the subscript i of
xi denotes that xi is the i-th column of X . The second form
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is by the collection of discrete positions. For example, the vector
i ∈ RL represents a set of ordinals, and thus the columns in X
which satisfy particular requirements can be denoted as xil , where
0 ≤ l ≤ L.

We adopt the convention of using the indicator function
φ(a,A) to compute the correlation between two groups as fol-
lows:

φ(a,A) =

{
1, if a ∈ A;

0, otherwise.
(6)

There are two kinds of the combinations of the component a and
the set A. The first one is the combination of scalars and vectors,
such as i and i. The other one is the combination of column
vectors and the corresponding matrix, such as xi and X .

3.2 Subspace Clustering
The goal of subspace clustering (SC) is to segment the data points
into a union of linear subspaces. Let {Si}Ki=1 denote K linear
subspaces of RD , each of which is with the rank of di. Consider
the data matrix X = {xi}Ni=1 lying on the K subspaces, where
N denotes the number of data samples and each xi denotes a
sample with D dimensions.

A typical subspace clustering method first constructs a sparse
linear representation of each data sample using the remaining
dataset as a dictionary [56]. It generates a coefficient matrix
Z ∈ RN×N by solving the following optimization problem:

min ‖Z‖ξ + λ‖X −XZ‖22 s.t. diag(Z) = 0, (7)

where the regularization term ‖Z‖ξ denotes a specific norm of
Z, and different ξ leads to different Z in terms of sparsity and
connectivity properties [13]. In (7), λ is the weighted parameter,
and the constraint diag(Z)=0 eliminates the trivial solution of
representing the samples as a linear combination of itself. Here,
the sparsity induces the subspace-preserving property which has
been extensively studied [38], [44], [54].

Definition 1. (Subspace-Preserving Property) Given the coef-
ficient matrixZ derived from (7), it holds the subspace-preserving
property if and only if zij = 0 for all xi ∈ S and xj /∈ S.

The coefficient matrix Z can be interpreted in two ways. First,
each column zi of Z is considered as a new representation of the
sample xi regarding the remaining samples inX , which is sparser
than the original one yet preserving the determinative ability [10].
Second, each entry zij in Z reflects the correlation between the
sample pair xi and xj [54]. As a result, it can be used to construct
the affinity graph G.

After generatingZ by solving the optimization problem in (7),
the next step of the subspace clustering is to infer the segmentation
of the samples using the spectral clustering module [1], [16].

3.3 Graph Interpretation
Spectral based subspace clustering algorithms can be considered
as a graph segmentation process [16]. In this section, we illustrate
the subspace clustering method from the graph perspective.

Given a set of data samples X , subspace clustering methods
compute the optimization problem in (7) to generate the coefficient
matrix Z. We interpret Z as a correlation matrix which reflects
the similarities between all sample pairs. Since we have no more
information than the data samples in X and the similarities in Z,
we represent the data samples in the form of the affinity graph

denoted by G = (V ,E). Specifically, each data sample xi in X
is a vertex vi of the graph. We define a symmetric nonnegative
affinity matrix W ∈ RN×N as W = |Z| + |Z|>. A pair of
vertices are connected if and only if the similarity wij between the
corresponding samples xi and xj is non-zero. The edge between
the connected vertices xi and xj is weighted by wij .

Definition 2. (Connectivity) The connectivity property requires
that the samples within same subspace form a connected compo-
nent in the affinity graph G [15].

After constructing the affinity graph G, spectral clustering
methods compute the graph Laplacian of G to detect theK cluster-
s. Regarding the characteristics of the spectral clustering, an ideal
G derived by W meets the following three requirements [16],
[54]:

• If xi and xj are connected with the weight beingwij 6= 0,
then we have xi ∈ S and xj ∈ S;

• If we have xi ∈ S and xj /∈ S , then xi and xj are
disconnected;

• The connections should be as few as possible, and yet
guarantee the connectivity property within each subspace.

As a result, an ideal G has K connected components correspond-
ing to K subspaces, which guarantees the performance of the
spectral clustering [6].

For ease of analysis, we also construct the subgraph among
the samples within a single subspace S . Specifically, given XS
being the subset of X where XS contains the samples x ∈ S,
and WS being the corresponding block in W , we construct the
subgraph GS = (XS ,WS). In this paper, we aim to eliminate the
redundant connections among each GS to generate G∗S , of which
the connectivity property is preserved.

3.4 Problem Formulation
Given a set of noise-free data samples X lied on K independent
subspaces, a sparse subspace clustering (SSC) algorithm embeds
the correlation of the data samples into a sparse affinity graph
since each sample x ∈ Si ideally is best modeled by a linear
combination of di samples in Si. Here, di denotes the intrinsic
rank of Si. As a result, the subspace-preserving property and the
connectivity within a subspace are guaranteed [56].

However, under a mild assumption on both X and S, these
two properties are not well preserved due to the erroneous con-
nections [15]. A robust SSC algorithm aims to generate a affinity
graph which eliminates the effect of errors and preserves only
the key connections between samples in the same subspace [54].
These methods model and minimize the errors in the objective
functions, e.g.,

min ‖Z‖1 + λ‖E‖1 s.t. X =XZ +E, zii = 0, (8)

where E ∈ RN×N contains the vectors of sparse error entries.
Unfortunately, the structure of errors is always unknown in the
original space and the complex convex optimization problem is
complex to be solved efficiently [19].

In this paper, we propose to eliminate the effect of erroneous
and redundant connections on the projection space (spanned by
Z) instead of the original data space. We exploit the intrinsic
structure of the correlation matrix Z derived by (7) to find the key
connections which induce both the subspace-preserving property
and the connectivity within each subspace. We then retain only
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the generated key connections and remove others to enhance the
performance of detecting the connected components of the graph.

Problem 1. (Pruning Erroneous Connections) LetZ ∈ RN×N
be the correlation matrix ofX computed by (7), of which the intra-
subspace projection dominance property [19] is guaranteed. The
goal of the pruning process is to preserve the least connections in
the affinity graph G while the following two properties of G are
still satisfied:

• Subspace-preserving property in Definition 1;
• Connectivity property in Definition 2.

4 PROPOSED ALGORITHM

In this section, We handle the connected pruning in Problem 1
with mild assumptions on both data samples and subspaces. We
first define the good neighbors for subspace clustering based on
the coefficient matrix Z (also termed as the correlation matrix)
derived by (7). Next, we refine Z to generate Z∗ based on
the relationship of good neighbors. Finally, we use the spectral
clustering method [12] to segment the data points.

4.1 Good Neighbors

For each data sample xi ∈ S, the subspace clustering algorithms
utilize the self-expressive property, i.e., each data sample can
be reconstructed by a linear combination of other points in the
dataset [54]. As a result, xi can be written as

xi =Xzi, s.t. zii = 0, (9)

where the data matrix X is considered as a self-expression
dictionary and zi = [z1i, z2i, · · · , zNi] contains the coefficients
of the combination. With proper norm based regularization on zi,
the model in (9) ensures the representation using samples in S.

However, given an arbitrary subspace S, we have n > dwhere
n is the number of samples in S and d is the intrinsic rank of
S. Thus, for xi a model needs to select d samples for linear
representation from n candidates, which is not unique in gener-
al [54]. Meanwhile, the samples can often lie near the intersection
of multiple subspaces in real applications, and the combination
may contain redundant or incorrect connections which affects the
detection of the connected components.

The intra-subspace projection dominance property of the self-
expression in (7) for ξ = 1, 2,∞, etc., has been shown by Peng et
al. [19], which indicates that the coefficients over intra-subspace
samples are likely to be larger than those over inter-subspace
samples. Note in the linear representation system by Z, xj ∈ S
may not necessarily choose xi in its sparse representation even if
xi ∈ S and xi is represented by a linear combination of some
points including xj [54]. Namely, such asymmetric representation
issues are likely to occur. Therefore, we introduce the symmetric
nonnegative affinity matrix W as

W =
1

2
(|Z|+ |Z|>), (10)

to guarantee that the nodes xi and xj are connected to each
other. Similar to [18], [19], we first collect the samples with top
η coefficients in wi for xi, where the parameter η is empirically
determined from experiments discussed in Section 7.2.

i
x

j
x

k
x

Fig. 2. Illustration of the requirement that xj (with green circle) is the
good neighbor of xi (with blue circle) assuming µ = 1. Samples with
gray circle are the η-neighbors of the corresponding sample. The lines
indicate the connections in the affinity graph. As shown by the blue
connections, xi, xj and xk are on same path as defined in Definition 5.

Definition 3. (η-neighbors) For each sample xi, its η-neighbors
(constructing the set Nη(xi) ∈ R1×η) are defined as follows:

Nη(xi) = argmax
xj

η∑
j=1

|wij |. (11)

The definition of η-neighbors is in spirit similar to the
work [57] which preserves the max γ entries in wi (γ < η < n
where n is the number of samples in each subspace). Since larger
wij usually reflects a higher similarity between xi and xj and
d ≤ γ < n, the model in [57] guarantees the sparsity and
subspace-preserving properties of W . However, preserving only
the connections with largest γ weights does not guarantee that
vertices within one cluster form a connected component due to the
trade-off between the sparsity and the connectivity [13]. Therefore,
the spectral clustering conducted on the sparse coefficient matrix
derived by [57] may potentially over-segment the samples, i.e.,
assigning xi ∈ S and xj ∈ S to different clusters.

To preserve both the sparsity property of G and connectivity
property of each GS , we define the good neighbors of each sample
which induce the key latent connections in a graph. For each
sample xi, we preserve γ good neighbors from its η-neighbors
Nη(xi) rather than γ largest entries from wi, of which the
connectivity within subspace is proved in Section 5.2.

Definition 4. (Good Neighbor) We determine whether xj ∈
Nη(xi) is a good neighbor of xi. Given the η-neighbors of xi,
i.e., Nη(xi), if there are µ samples {xil}

µ
l=1 ⊂ Nη(xi) which

satisfy:

φ(xj ,Nη(xi1))×
(

µ∏
l=2

φ(xil−1
,Nη(xil))

)
×

φ(xiµ ,Nη(xi))× φ(xi,Nη(xj)) = 1,

(12)

where µ ≤ η, i ∈ Rµ is the set of ordinals and φ is the indicator
function, then xj is the good neighbor of xi.

For each sample xi, we consider its η-neighbors Nη(xi) as
the candidates of good neighbors. We analyze the candidates se-
quentially to generate γ good neighbors of xi where the parameter
γ < η is determined by the intrinsic rank of each subspace and
will be verified via experiment in Section 7.2. If there are less than
γ candidates which satisfy the condition in (12), we consider the
candidates with largest coefficients as the relaxed good neighbors.

We then present the graph representation of good neighbors.
For samplesXS in each subspace S, we extract only the affinities



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

WS between the samples and its η-neighbors to construct a new
subgraph G′S = (XS ,WS). Each sample and one of its η-
neighbors are connected via a path, which can be extended to
a longer connection with multiple samples.

Definition 5. (Good Neighbor: A Graph Interpretation) We
determine whether xj ∈Nη(xi) is a good neighbor of xi. Given
the subgraph G′S of which we have xi ∈ VS , and the η-neighbors
Nη(xi) which are connected with xi. If there is a path between
xi and xj with other µ samples {xil}

µ
l=1 ⊂ Nη(xi), where

µ ≤ η, i ∈ Rµ is the set of ordinals, then xj is the good neighbor
of xi.

The good neighbor of xi, e.g., xj , is required to be connected
to not only xi but also other µ samples selected from Nη(xi)
which form a path to xi. Therefore, more latent connections
between xi and its good neighbor xj are guaranteed while
existing a typical subspace closeting method only ensures one
connection for each sample pairs.

Figure 2 shows the requirement that xj is the good neighbor of
xi when we set µ = 1. In this case, xj belongs to the η-neighbors
of xi, xk belongs to the η-neighbors of xj and sequentially xi
belongs to the η-neighbors of xk. Namely, the good neighbor of
each sample ensures a local connectivity among its η-neighbors.
For xi ∈ S, we find γ ≤ n

µ good neighbors, where n denotes the
number of samples in S. Here, we set γ < η while η is sufficiently
large to support the selection process of good neighbors. In the
remainder, we use N ∈ Rγ×N to determine the collection of
good neighbors, of which N i ∈ Rγ denotes the set of good
neighbors of xi. We use γ to control the sparsity and µ to control
the connectivity. We discuss the details of these parameters in the
next section.

4.2 Finding Good Neighbors for Subspace Clustering

In this section, we introduce a method to improve the subspace
clustering algorithms by finding good neighbors. We first generate
the good neighbor matrix N according to the Definition 4 and 5.
We then solve Problem 1 by updating Z for a new coefficient
matrix Z∗. Finally, we exploit the structure of the collection of
multi-subspace data using a spectral clustering algorithm.

The main step for Finding Good Neighbors (FGN) are sum-
marized in Algorithm 1. Given the collection of N data samples
{xi}Ni=1 which lie in a union of K subspaces, the FGN method
first computes the coefficient matrix Z via an off-the-shelf opti-
mization function in (7). Then the symmetric nonnegative affinity
matrix W is obtained via (10).

For each sample xi, i ∈ [1, 2, · · · , N ], we aim to find its γ
good neighbors which satisfy Definition 4. We first generate its
η-neighbors Nη(xi) ∈ Rη by (11), where we set η > γ for the
pruning process. The samples in Nη(xi) are the candidate of the
γ good neighbors of xi.

To determine whether xj ∈ Nη(xi) is a good neighbor of
xi, we design a scoring scheme by traversing on Nη(xi) instead
of using (12) which is NP-hard. We instantiate the process by
setting µ = 1, denoting that the path between xi and one of its
good neighbors must contain one different neighbor of xi. Given
xj ∈Nη(xi) andNη(xj) = {xjm}

η
m=1, we compute the score

sij for xi and xj by the following equation:

sij =

η∑
m=1

φ(i,Nη(xjm)). (13)

Algorithm 1 : Finding Good Neighbors (FGN)
Input: Z = [z1, · · · , zN ] ∈ RN×N , γ, η, ε.
1: compute the affinity matrix W by (10);
2: for i = 1 : N do
3: compute the η-neighbors Nη(xi) = {xjl}

η
l=1 by (11);

4: m = 1;
5: for l = 1 : η do
6: compute sil for xil ∈Nη(xi) using (13);
7: if sil > ε & m < γ then
8: N i = N i ∪ xil ;
9: m = m+ 1;

10: end if
11: if m > γ then
12: N i = N i ∪ x̃ where x̃ is computed by (14);
13: end if
14: end for
15: end for
Output: Good neighbor matrix N .

Algorithm 2 : Finding Good Neighbors for Subspace Cluster-
ing
Input: X = [x1, · · · ,xN ] ∈ RD×N , K, η, γ, ε.
1: Generate Z ∈ RN×N via (7).
2: Use Algorithm 1 to obtain the good neighbor matrix N .
3: for i = 1 : N do
4: compute z∗ij in Z∗ via (15).

5: end for
6: LetW ∗ = 1

2 (|Z
∗|+|Z∗|>) and compute segmentation from

W ∗ by spectral clustering [12].
Output: Labels of samples L ∈ RN .

We consider xj as the good neighbor of xi whenever sij > ε
where ε is a threshold which is discussed in Section 7.2.

We obtain each N i by picking the first γ candidates from
the corresponding Nη(xi) which satisfy the aforementioned re-
quirement. If we cannot find γ good neighbors for xi, we select
the candidate x̃ which holds the largest similarity in Nη(xi) for
relaxation:

x̃ = argmax
xil

|wiil |, (14)

where wiil indicates the similarity between xi and xil .
We update a new coefficient matrix Z∗ according to the good

neighbor matrix N generated from Algorithm 1. We compute
each entry z∗ij of Z∗ by:

z∗ij =

(wij) /

(
γ∑
l=1

wiil

)
, if xj ∈N i;

0, if xj /∈N i,
(15)

where W is the affinity matrix computed by (10) and i is
the set of ordinals of the good neighbors of xi. Obviously, we
have 0 ≤ z∗ij < 1. We introduce the normalization process on
the similarities to handle the problem that the followed spectral
clustering puts more emphasis on keeping the stronger connections
in the graph [16], [54].

After generating the updated coefficient matrix Z∗, the next
step is to infer the subspace structure of the data samples using
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the sparse coefficients. To address this problem, we first compute
the new affinity matrix W ∗ by

W ∗ =
1

2
(|Z∗|+ |Z∗|>). (16)

Therefore, each node xi connects itself to one of its good neigh-
bors xj ∈N i by an edge with the weight being 1

2 (|z
∗
ij |+ |z∗ji|).

We construct a new affinity graph G∗ according to W ∗. Subse-
quently, the normalized cut method [12] is applied to G∗ in a way
similar to [11], [42], [58] to generate the final segmentation results,
i.e., the labels of the samples L ∈ RN . The main procedures of
FGNSC are illustrated in Figure 1 and summarized in Algorithm 2.

The proposed FGNSC algorithm is a general post-processing
module that can be complementary to other spectral clustering
algorithms, especially for those developed based on dense co-
efficient matrices. It transforms the coefficient matrix Z into a
sparser Z∗, and preserves the connectivity within each subspace
by finding good neighbors for each sample.

5 THEORETICAL ANALYSIS

In this section, we present the theoretical analysis of the subspace-
preserving and the connectivity properties for theZ∗ generated by
the proposed algorithm.

5.1 Subspace-Preserving Property

The intrinsic requirement for the success of the spectral based
subspace clustering methods is that the optimization process
recovers a linear representation of each sample [54]. Specifically,
the non-zero entries of the representation zi should correspond to
the subspace of the given sample xi. We prove the consistency of
the proposed post-processing method by introducing the following
lemma.

Lemma 1. (Intra-subspace projection dominance [19]) The
correlation space Z derived by the `1, `2 or nuclear norm based
linear projection has the intra-subspace projection dominance
property, i.e., for all xp,xq ∈ S and xk /∈ S, we have
zpq ≥zpk [19].

Proposition 1. The obtained Z∗ by the proposed algorithm has
the subspace-preserving property as defined in Definition 1, i.e.,
z∗ij = 0 for all xi ∈ S and xj /∈ S.

Proof. For each sample xi, we compute its η-neighbors
Nη(xi) from (11) which selects the connections with top η
values of the wi. Considering the IPD in Lemma 1 and η < n
where n is the number of samples in one subspace, it follows that
the candidate η-neighbors of xi are in the same subspace with
xi, i.e., xi ∈ S if and only if Nη(xi) ⊂ S. Since we generate
the good neighbors from the η-neighbors, we have N i ⊂ S.
Therefore, as we set z∗ij = 0 if xj /∈ N i as shown in (15), the
subspace-preserving property of Z∗ is thus proved.

Note the IPD property [19] is enforced from the optimization
schemes based on various norms, including the `1-, `2-, `∞ norm
and the nuclear norm. Therefore, the coefficient matrixZ∗ derived
by the proposed FGNSC algorithm has the subspace-preserving
property when combined with most existing linear representation
schemes.

5.2 Connectivity

Conventional subspace clustering methods [13], [20], [59] en-
forces the connectivity property by preserving dense connections
within each subspace. In this paper, we exploit the latent con-
nectivity for each subspace with a sparse affinity graph of which
each connection induces multiple correlations between samples.
We first introduce the lemma for proving the connectivity property
preserved by the proposed algorithm.

Lemma 2. (Connected graph [60]) Given the graph G =
(V ,E), it is connected if and only if G meets the following
requirement:

• ∀vi,vj: eii1 × ei1i2 × · · · × eilj 6= 0,

where i ∈ Rl−2 contains the ordinals of the samples which lie
on the path between vi and vj , andl is the length of the path
(number of samples on the path).

Note if we have l = 2, then the graph G is fully connected.
To verify the connectivity property as in Definition 2, we need
to prove that each subgraph GS = (VS ,ES) is connected as
defined in Lemma 2. We instantiate the verification process with
an arbitrary sample xi ∈ S such that xi is connected to the other
n− 1 points in S.

Proposition 2. The subgraph GS = (XS ,W
∗
S) is a connected

graph if the parameter γ and µ satisfy:

(µ+ 1)γ2 + µγ + 2 ≥ n. (17)

Here, XS = {xi}ni=1 contains the samples in S and n is the
number of samples in S. The W ∗

S is a block of W ∗ in (16)
derived from NS where NS = {xil}nl=1 denotes the matrix of
the good neighbors for the samples in S.

Proof. We aim to verify the existence of n − 1 connections
for an arbitrary sample xi either directly or latently.

Note xi is connected to each of its good neighbors directly
according to (15). Given the set of γ good neighbors for xi, i.e.,
{xil}

γ
l=1, the connectivity between xi and these u(1)=γ points

is guaranteed. In addition, for each of its good neighbors xj , there
are µ neighbors on the path between xi and xj as shown in
Definition 5. Therefore, xi is guaranteed to be connected with
another v(1) samples latently where µ ≤ v(1) ≤ γµ.

Next, we consider the connections derived from the good
neighbors {xil}

γ
l=1. For each xil , it brings u(2)l + v(2)l new

connections by the samples in N il , where we have 0 ≤
u(2)l + v(2)l ≤ γ(µ + 1). Thus the γ good neighbors introduce
u(2) + v(2) ∈ [0, γ2(µ+ 1)] new connections for xi.

Note that all {xil}
γ
l=1 have good neighbors, which can bring

new latent connections for xi. For clear illustration, we take the
strongest

∑2
i=1 u(i)+v(i) connections into account. According to

Lemma 2, we have the following condition for a connected graph
G:

2∑
m=1

γm(µ+ 1) ≥ n− 1, (18)

where n is the number of samples in S. The relationship among
γ, µ and n can be described by (µ + 1)γ2 + µγ + 2 ≥ n
as in (17). For the worst case, G can also be connected by the
following constraint:

max(γ, µ) ≥ n− 1. (19)
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Fig. 3. Illustration of the proof on connectivity about the four types of the
connections for xi in the proof of Proposition 2, i.e., u(1), v(1), u(2) and
v(2). The blue lines indicate the direct connections while the black lines
indicate the latent ones.

Figure 3 shows a diagram of four types of connections, i.e.
u(1), v(1), u(2) and v(2). Note the worst cases that v(1)=µ and
u(2) + v(2)=0 correspond to a dense local geometry (µ samples
are fully connected with each other and separated from the others),
which should be assigned to a new subspace rather than S. There
could be two extreme cases as follows:

• All the N×γ good neighbors cannot be found: we choose
an equal number of η-neighbors derived by (11) for
relaxation, of which the model is relaxed to the sparsity-
based models;

• The model requires the condition in (19), i.e.,
max(γ, µ) ≥ n − 1: all entries of Z∗ are non-zero, of
which the model is equal to the approaches aiming to pro-
mote the connectivity by preserving the dense connections.

For the other cases, our model achieves a balance between the
sparsity and connectivity properties. As shown in Proposition 1
and 2, the new representation Z∗ is the result of the trade-off
between the interclass separation and the intra-class connectivity.
Since the subsequent steps of spectral clustering segments the
graph by correcting the erroneous connections in the affinity
graph [16], [24] which relies on the two properties, the proposed
algorithm has the theoretical guarantee of clustering performance.

6 CLUSTERING REAL-WORLD IMAGE DATA

In real world applications, subspace clustering algorithms may
not perform well due to outliers or model assumptions [6]. For
example, the data may not lie perfectly on a union of subspaces
due to the noise or outliers introduced by the clustering oper-
ations [54]. In addition, the number of clusters K is always
unknown [44] which needs to be estimated before applying the
spectral clustering. In this section, we exploit the robustness of
our proposed algorithm regarding both aspects.

6.1 Handling Outliers
We analyze how of the proposed FGNSC algorithm (summarized
in Algorithm 2) performs on the noisy samples with outliers. The
subspace-preserving property of the correlation matrix Z does not
hold in the presence of outliers as inter-cluster connections [30],

[61] are introduced. In contrast to existing methods [1], [31] which
optimize the noisy entries in a unified framework by incorporating
a term E in (8), we remove the outliers by eliminating the wrong
connections according to the mapped affinity graph.

As shown in Figure 2, given the samples xi and xj , the
good neighborhood relationship requires not only the connection
between xi and xj , but also the connections from xj to xk
and from xk to xi. If xj is one of the outliers which happens
to be connected with xi, we have xj /∈ Nη(xk) with a high
probability. Therefore, the proposed model is robust to the outliers
while a larger µ induces better robustness.

6.2 Estimating the Number of Clusters
In most real-world applications, the number of clusters, i.e., K ,
is usually unknown when spectral clustering [2], [27], [62] is
used. Theoretically, the model estimation problem in subspace
clustering, i.e., estimating the number of clusters, can be handled
by counting the number of non-zero eigenvalues of the Laplacian
matrix L [44]. Here, the Laplacian matrix L is derived by

L = I −D− 1
2WD−

1
2 , (20)

where I is the identity matrix, D is the diagonal degree matrix
where dii =

∑N
j=1 wij . However, the existence of the non-

zero eigenvalues relies on the strict block-diagonal property of
the permuted W , i.e., wij 6= 0 only if xi ∈ S and xj ∈ S.
Therefore, it is generally challenging to obtain a correct estimate
due to the existence of non-zero entries [19], i.e., wij 6= 0 but
xi ∈ S and xj /∈ S. Sequentially, Liu et al. [44] propose a soft
thresholding approach to estimate K̂ by:

K̂ = N − int

(
N∑
i=1

fτ (σi)

)
, (21)

where N is the number of samples in the dataset, {σi}Ni=1 denotes
a set of singular values of L and int(·) outputs the nearest integer
of a real number. The soft thresholding operator fτ (·) is defined
as:

fτ (σi) =

{
1, if σ > τ ;

log2(1 +
σ2

τ2 ), otherwise,
(22)

where τ is the learned threshold to eliminate the errors of {σi}Ni=1.
As shown in Proposition 1, the subspace-preserving property

of Z∗ and thus W ∗ is guaranteed. In addition, as described
in Section 7.4 and Figure 5, W ∗ holds stricter block-diagonal
property than W derived by other methods. Therefore, it is easier
to obtain the value of τ that is robust to variation of cluster
numbers in this work.

7 EXPERIMENTAL RESULTS

We first demonstrate effectiveness of the proposed good neighbors
for subspace clustering and then evaluate the FGNSC algorithm
against the state-of-the-art methods. In addition, we analyze the
efficiency of the algorithm in terms of run-time.

7.1 Experimental Settings
In the experiments except for Section 7.6, the FGNSC algorithm
consists of the smooth representation (SMR, [50]) in (4), FGN in
Algorithm 1 and spectral clustering [12]. We first find a proper
assignment of the parameters, e.g., γ, and µ. Next, we show the
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TABLE 1
Evaluated datasets. The image size used in the experiments are shown

in the last column.

Datasets # of
Classes

Samples per
Class

Original
Size

After
Resizing

EYaleB 38 64 192×168 48×42
COIL-20 20 72 448×416 64×64
MNIST 10 300 28×28 28×28
USPS 10 300 16×16 16×16
AR 100 26 165×120 48×42

effectiveness of the good neighbor matrix N by contrasting the
error rate of N using the pre-defined metric Ne and the accuracy
of the final labels L. We also compare the affinity matrix derived
by several methods to verify the trade-off between the subspace-
preserving property and the connectivity. Finally, we evaluate the
FGNSC algorithm on five benchmark datasets. In the tables on
clustering results, each entry indicates the average of fifty trials
with different combinations of classes (except those of the whole
datasets). The source code will be made available to the public for
reproducible research.

Datasets. We conduct the experiments on the extended Yale
B (EYaleB [63]), COIL-20 [64], MNIST [65], USPS [66] and
AR [67] datasets. The images are resized to p × q pixels to form
the data vectors xi ∈ Rpq , and concatenated together to form X .
Table 1 shows the details of the datasets.

Evaluated methods. We compare the proposed FGNSC algorith-
m with the state-of-the-art subspace clustering methods includ-
ing SSC (with the ADMM solver) [1], [54], spatSC [41], L2-
Graph [19], LSR [49], SMR [50], SSC-OMP [38], ORGEN [13],
RSSC [36], NSN [33], iPursuit [18], [55], OSC [23] and LRR [44].
In the experiments, we tune the parameters for these methods to
achieve the best results.

Metrics. We evaluate all the methods using two widely-used
metrics in clustering: clustering accuracy (ACC) and normalized
mutual information (NMI). In addition, we define the Ne metric
to evaluate the matrix of good neighbors. Let gi be the set of intra-
class samples for xi generated from the ground-truth, and nij be
the j-th good neighbor of xi (j ∈ [1 : γ] where γ denotes the
number of good neighbors for each sample). We define Ne by

Ne = 1−
∑N
i=1

∑γ
j=1 φ(nij , gi)

N × γ
, (23)

where φ(·, ·) is the indicator function as defined in (6). A smaller
value of Ne indicates better performance.

7.2 Parameters
For computational efficiency, we set ε = 1, which means that if
sij from (13) satisfies sij ≥ 1, then xj is considered as a good
neighbor of xi.

To optimize the connectivity of each subspace, we evaluate
the impact of γ and µ on a subset of 8 subjects from the extended
Yale B dataset. Since the connections between samples become
weaker with a longer path, we fix µ = 1 and optimize γ for the
best assignment. Using (17) with µ = 1 and n = 64, we have the
least γ ≥

√
497−1
4 > 5. For each experiment, we assign the value

of γ ∈ [3 : 12] and obtain the curves as shown in Figure 4. As we
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Fig. 4. Clustering performance with different γ on the extended Yale B
dataset of 8 classes.

obtain the ACC= [0.3073, 0.8281] and NMI= [0.1148, 0.7528]
with γ = [1, 2] respectively, we do not add them to the figure for
better illustration.

The curves in Figure 4 indicates that the FGNSC algorithm
does not perform well with γ={3, 4}. When γ is increased, the
FGNSC algorithm achieves better performance until reaching the
peak value with γ=8. Therefore, we use γ=8 and µ=1 for the
rest of the experiments. Accordingly, we set η = 20 for (11)
considering the balance between the computational efficiency and
the effectiveness for selecting γ good neighbors.

7.3 Matrix of Good Neighbors

The coefficient matrices derived by the SSC-OMP [38] and iPur-
suit [18] methods is computed based on correlation of neighboring
data points in the data space. In this section, we analyze the effects
of N by comparing the SSC-OMP, iPursuit and FGNSC methods.

We select the images of Nc subjects from the extended Yale B
dataset with Nc ∈ {3, 5, 8, 10, 15, 20, 25, 30, 35, 38} and γ = 8
for all three methods. We use theNe metric in (23) to evaluate the
neighborhood matrix N derived by these methods and ACC to
evaluate the segmentation results. Table 2 shows the experimental
results. Overall, the FGNSC algorithm achieves the accuracy of
more than 94% on all subsets, with the error Ne of less than
9%. In contrast, the SSC-OMP method does not perform well. It
achieves the clustering accuracy of less than 60% on the set of 38
subjects with the error rate of the neighbor matrix being 39.84%.

7.4 Affinity Matrix

We evaluate six clustering methods in terms of affinity matrix W
in (10) and (16). Figure 5 shows the affinity matrices derived by
the evaluated methods. We carry out the experiments on the first
three digits of MNIST for clear illustration. For each digit, we
choose the first 300 images to construct the subset. Figure 5(f)
is the affinity matrix derived by the FGNSC algorithm. This
affinity matrix is generated from the original coefficient matrix in
Figure 5(b) computed by the SMR [50] method. Note the affinity
matrixW in Figure 5(f) has the better sparsity and block-diagonal
property, both of which are important for spectral clustering and
lead to the accuracy of 98.11% and the NMI of 0.9140. In
Figure 5(e), we preserve the top γ entries for each column of
the W in Figure 5(b) to contrast the FGNSC algorithm with
the L2-Graph in [19]. More erroneous connections are introduced
in Figure 5(e) than Figure 5(f) since several digits may lie on
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TABLE 2
Clustering results by the SSC-OMP, iPursuit and FGNSC methods on subsets of the extended Yale B dataset using Ne and ACC. Each column
shows the results on subsets with different number of subspaces. The FGNSC method achieves higher accuracy with lower Ne on all subsets.

Metrics Methods 3 5 8 10 15 20 25 30 35 38

Ne ↓
SSC-OMP [38] 20.09 25.73 23.44 31.23 30.46 37.12 38.74 37.32 41.30 39.84
iPursuit [18] 9.10 10.63 10.70 10.42 11.04 11.76 11.80 12.10 12.52 12.82
FGNSC 3.29 4.89 6.04 6.61 7.28 7.65 8.03 8.21 8.44 8.52

ACC ↑
SSC-OMP [38] 94.32 85.03 78.41 72.22 71.29 59.13 54.74 61.62 51.84 57.44
iPursuit [18] 97.19 96.19 95.98 95.03 95.47 93.41 92.77 91.55 91.62 83.68
FGNSC 99.34 98.61 97.86 97.44 96.60 96.09 95.72 95.45 95.41 94.24

(a) (b) (c) (d) (e) (f)

Fig. 5. Affinity W derived by six methods on the first three digits of the MNIST dataset. (a) Affinity matrix by the LSR [49] method with the accuracy
of 64.89%. (b) Affinity matrix by the SMR [50] method with the accuracy of 83.11%. (c) Affinity matrix by the SSC-OMP [38] method which is sparse
enough but does not have the block-diagonal property. (d) Affinity matrix by the ORGEN [13] method with the accuracy of 53.22% and the NMI of
0.4912. (e) A variant of (b) which simply preserves the top γ entries for each column; it leads to the accuracy of 81.33% and the NMI of 0.4835. (f)
Affinity matrix by the FGNSC algorithm with the accuracy of 98.11% and the NMI of 0.9140.

the intersection of the subspaces and wrong combinations for the
representations may be generated.

7.5 Comparison to the State-of-the-Art Methods

Table 3 shows the run-time of the FGNSC algorithm and other
methods using subsets from the extended Yale B dataset on a
machine with a 2.93GHz CPU and 32 GB RAM. Table 4 shows
the clustering results in terms of average ACC and NMI. Overall,
the proposed FGNSC algorithm performs favorably against the
state-of-the-art consistently on five benchmarks.

On the extended Yale B dataset, the FGNSC algorithm per-
forms well in terms of ACC and NMI. The ACC by the FGNSC
algorithm is more than 94% and the NMI of more than 0.9 on
all subsets. The SMR method achieves an accuracy of 96% with
Nc = 8 but the performance declines when the dataset becomes
larger. The main reason is that the coefficient matrix Z derived
by the SMR method has many redundant connections such that
the spectral clustering does not perform well. The iPursuit method
also achieves the NMI of more than 0.9 on all subsets. However it
requires more than 400 seconds on the whole dataset. The FGNSC
algorithm takes 90 seconds to process the entire extended Yale B
dataset with 38 classes, but most of the run-time is on computing
the initial Z by the SMR method which uses 75 seconds.

The FGNSC method performs well on the COIL-20 dataset
especially for Nc = 5 with an average accuracy of more than
99% and an NMI of more than 0.98. The subspace structure of
the COIL-20 dataset is amicable to the FGNSC algorithm since
samples in the same cluster are close (as a result of dense sampling
with clean backgrounds) and samples in different clusters are
distinct (as a result of diverse object classes).

The FGNSC algorithm performs well on the MINST dataset
especially on the subset with three digits. However, the average
accuracy decreases to 75% for the whole dataset when Nc = 10.

This can be attributed to the fact that some handwritten digits
are similar (e.g., 3 and 8; 1 and 7). We note that the SSC-OMP
scheme performs worse, with accuracy dropping from 97.64%
when Nc = 3 to 53.30% when Nc = 10.

On the USPS dataset, the FGNSC algorithm exhibits similar
performance trend to that on the MNIST set. The ORGEN scheme
performs better than the FGNSC method on the USPS dataset,
mainly because the performance of the SMR method is poor in
terms of the NMI (around 50% on all scale of subsets).

The accuracy of the ORGEN method is less than 26% on
the AR dataset, while the FGNSC algorithm achieves accuracy
of more than 84%. It is difficult to cluster the AR dataset as
it contains real-world images of faces. While the background is
simple, the face images are not aligned well. Most clustering
algorithms based on sparsity, e.g., SSC-OMP and SSC, do not
perform well as the connections between samples are not extracted
well. Overall, good neighbors can be generated by the FGNSC
algorithm effectively as the subspace structure can be well recon-
structed by them. This is also the main reason why the FGNSC
method performs well on all the evaluated datasets.

7.6 Combination with Other Subspace Models

In this section, we combine the proposed FGN method with
other subspace clustering methods, i.e., LSR [49], OSC [23],
spatSC [41] and LRR [44], rather than SMR [50]. For each
experiment, we first compute the initialized coefficient matrix
Z by each subspace scheme. The FGN method is then used to
generate Z∗. Finally, the spectral clustering is carried out on both
Z andZ∗. Table 5 shows the clustering results by all the evaluated
methods.

The proposed post-processing module significantly enhances
the performance of the evaluated subspace clustering algorithms
with different representation terms. For instance, the low rank
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TABLE 3
Run-time in seconds (s) on the subsets of extended Yale B database. On the entire extended Yale B dataset with 38 subjects, the FGNSC

algorithm takes 90 seconds but most of which is on computing the initial coefficient (75 seconds).

# of SSC spatSC L2-Graph LSR SMR SSC- ORGEN RSSC NSN iPursuit FGNSC
subjects [1] [41] [19] [49] [50] OMP [38] [13] [36] [33] [18]

8 38.30 0.20 0.08 0.98 0.64 0.36 0.99 6.92 0.45 12.87 0.70
15 118.50 0.84 0.28 2.02 3.28 1.06 1.92 17.44 1.29 26.51 3.71
30 658.52 4.90 2.24 9.08 30.61 3.17 4.69 83.29 7.93 256.59 37.45
38 1239.90 8.66 5.76 17.93 75.24 4.88 7.17 147.39 13.78 422.35 91.73

TABLE 4
Clustering results of evaluated algorithms on five datasets: extended Yale B [63], COIL-20 [64], MNIST [65], USPS [66] and AR [67]. Each

experiment is carried out fifty times and the average results are reported. The best results are shown in boldface.

Datasets Scale Metrics SSC
[1]

spatSC
[41]

L2-
Graph [19]

LSR
[49]

SMR
[50]

SSC-
OMP [38]

ORGEN
[13]

RSSC
[36]

NSN
[33]

iPursuit
[18]

FGNSC

EYale B

8 ACC 59.61 20.84 27.53 73.46 96.43 78.41 66.78 73.42 89.43 95.98 97.86
NMI 0.5518 0.1179 0.1927 0.6332 0.9270 0.5873 0.6333 0.6550 0.8013 0.9254 0.9511

15 ACC 48.46 19.62 20.55 58.88 92.15 71.29 58.61 62.98 84.56 95.47 96.60
NMI 0.5594 0.2590 0.2127 0.5447 0.8885 0.6372 0.6166 0.6137 0.7767 0.9202 0.9284

30 ACC 36.71 18.02 16.73 58.62 89.48 61.62 54.53 58.31 78.66 91.55 95.45
NMI 0.5211 0.3704 0.2603 0.5855 0.8774 0.6243 0.6291 0.6104 0.7705 0.9163 0.9186

38 ACC 32.52 20.23 20.81 58.26 87.91 57.44 53.66 57.81 77.55 83.68 94.24
NMI 0.5466 0.3806 0.3692 0.5917 0.8559 0.6054 0.6388 0.6152 0.7711 0.9072 0.9084

COIL-20

5 ACC 66.01 69.97 49.18 72.51 85.43 82.39 84.73 68.11 85.81 85.42 99.23
NMI 0.6688 0.7296 0.4903 0.6639 0.7225 0.4996 0.8854 0.6323 0.8452 0.8378 0.9814

10 ACC 56.46 59.44 31.93 63.70 80.83 77.54 75.07 64.55 85.32 76.21 96.13
NMI 0.6233 0.7293 0.4175 0.6402 0.6993 0.6632 0.8588 0.6555 0.8905 0.7883 0.9414

20 ACC 50.39 51.25 23.75 57.43 75.49 67.36 75.56 59.72 81.94 73.47 90.07
NMI 0.7051 0.7082 0.3511 0.6296 0.5949 0.6552 0.8822 0.6563 0.8734 0.7788 0.8901

MNIST

3 ACC 71.39 79.10 73.35 77.44 89.11 97.64 78.76 38.68 38.65 37.82 97.96
NMI 0.5475 0.5260 0.5190 0.5275 0.6671 0.8961 0.6622 0.0097 0.0092 0.0066 0.9046

7 ACC 19.70 57.13 29.65 62.00 78.09 71.13 68.92 19.29 19.54 18.94 85.88
NMI 0.5336 0.5045 0.2755 0.5326 0.5345 0.5647 0.6790 0.0125 0.0145 0.0117 0.7551

10 ACC 40.16 41.83 30.50 57.80 68.87 53.30 61.50 15.30 15.50 14.50 75.40
NMI 0.4872 0.4631 0.2516 0.5197 0.5195 0.4823 0.6463 0.0212 0.0168 0.0138 0.6629

USPS

3 ACC 65.81 84.49 48.05 81.05 85.64 92.74 89.86 57.50 58.62 57.95 94.12
NMI 0.4435 0.6129 0.2401 0.6377 0.5164 0.7676 0.8242 0.2594 0.3253 0.2659 0.7953

7 ACC 18.60 50.57 47.14 62.58 76.90 59.01 65.06 31.09 31.17 30.23 80.13
NMI 0.5295 0.4486 0.4785 0.5219 0.5160 0.3857 0.6625 0.3067 0.3002 0.2609 0.6927

10 ACC 32.34 44.73 37.37 60.40 68.83 47.33 63.57 23.15 24.40 23.30 75.37
NMI 0.4814 0.4693 0.4233 0.5096 0.5136 0.3272 0.6782 0.2721 0.2628 0.2540 0.6390

AR

30 ACC 32.91 32.92 47.14 76.21 81.26 30.37 25.25 68.09 23.12 66.88 87.24
NMI 0.5241 0.5504 0.6029 0.7913 0.6021 0.3759 0.4313 0.7598 0.3696 0.7336 0.8566

60 ACC 25.58 32.70 27.35 75.19 80.63 25.21 23.09 71.63 21.78 67.44 86.04
NMI 0.5162 0.5976 0.4373 0.8068 0.5602 0.4161 0.4825 0.8128 0.4321 0.7769 0.8601

90 ACC 23.87 30.41 23.43 72.53 80.39 23.52 21.81 71.56 20.29 67.46 84.22
NMI 0.5367 0.6173 0.4240 0.7983 0.5090 0.4404 0.5036 0.8278 0.4668 0.7891 0.8522

100 ACC 25.54 29.19 25.58 74.15 79.85 23.12 20.88 76.31 20.08 65.88 83.31
NMI 0.5393 0.6394 0.4920 0.8145 0.4755 0.4434 0.5054 0.8554 0.4756 0.7880 0.8493

representation (LRR) [44]) minimizes the nuclear norm ‖Z‖∗
to generate a dense coefficient matrix Z, which leads to the
accuracy of less than 60% and the NMI of 0.6331 on the extended
Yale B dataset with 38 subjects. When combined with the FGN
module, this algorithm achieves the ACC of 82.85% and the
NMI of 0.8891. As the proposed FGN method preserves only
the key connections and eliminates noisy ones, it performs well
with different representation schemes.

8 CONCLUSIONS

In this work, we propose the FGNSC algorithm to exploit
both sparsity and connectivity properties within each subspace

for effective subspace clustering. We find good neighbors for
each sample by utilizing the correlation information contained
in the initial affinity matrix rather than the input data space.
The relationship of good neighbors requires not only the direct
connections derived by pairwise correlations but also the latent
connections induced by other samples on the connected path.
Sequentially, the good neighbors introduce high probability that
the samples are within same subspace and are strongly connected.
We then reassign the coefficients of the selected good neighbors
and eliminate other values such that good neighbors have greater
opportunity to be segmented into the same cluster. In addition,
we present the theoretical guarantee of the subspace-preserving
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TABLE 5
More results on combining FGN with other linear representation
schemes on the extended Yale B dataset (e.g., FGN-LSR is the
combination of FGN in Algorithm 1 and the linear representation

module in LSR [49]). The best results are shown in boldface.

Methods Metrics 8 15 30 38

LSR [49] ACC 73.46 58.88 58.62 58.26
NMI 0.6332 0.5447 0.5855 0.5917

FGN-LSR ACC 96.11 90.80 89.85 90.30
NMI 0.9195 0.8778 0.8779 0.8824

OSC [23] ACC 24.53 20.16 16.60 15.34
NMI 0.1315 0.1760 0.2211 0.2424

FGN-OSC ACC 91.19 80.00 75.66 75.12
NMI 0.8549 0.7603 0.7399 0.7412

spatSC [41] ACC 20.84 19.62 18.02 20.23
NMI 0.1179 0.2590 0.3704 0.3806

FGN-spatSC ACC 76.02 73.40 69.80 70.72
NMI 0.7265 0.7544 0.7411 0.7512

LRR [44] ACC 68.10 61.70 61.69 59.54
NMI 0.6078 0.6161 0.6410 0.6331

FGN-LRR ACC 93.77 85.80 82.97 82.85
NMI 0.9152 0.8794 0.8839 0.8891

property and connectivity of the affinity graph. Extensive experi-
mental results demonstrate the effectiveness and efficiency of the
proposed algorithm against the state-of-the-art methods.
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