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Abstract
This paper addresses both the model selection (i.e. estimating
the number of clusters K) and subspace clustering problems
in a unified model. The real data always distribute on a union
of low-dimensional sub-manifolds which are embedded in a
high-dimensional ambient space. In this regard, the state-of-
the-art subspace clustering approaches firstly learn the affinity
among samples, followed by a spectral clustering to generate
the segmentation. However, arguably, the intrinsic geometrical
structures among samples are rarely considered in the opti-
mization process. In this paper, we propose to simultaneously
estimate K and segment the samples according to the local
similarity relationships derived from the affinity matrix. Giv-
en the correlations among samples, we define a novel data
structure termed the Triplet, each of which reflects a high rele-
vance and locality among three samples which are aimed to
be segmented into the same subspace. While the traditional
pairwise distance can be close between inter-cluster samples
lying on the intersection of two subspaces, the wrong assign-
ments can be avoided by the hyper-correlation derived from
the proposed triplets due to the complementarity of multiple
constraints. Sequentially, we propose to greedily optimize a
new model selection reward to estimate K according to the
correlations between inter-cluster triplets. We simultaneously
optimize a fusion reward based on the similarities between
triplets and clusters to generate the final segmentation. Exten-
sive experiments on the benchmark datasets demonstrate the
effectiveness and robustness of the proposed approach.

Introduction
State-of-the-art subspace clustering methods model high-
dimensional data samplesX = {xi ∈ RD}Ni=1 into a union
of low-dimensional subspaces {Sj}Kj=1 (Elhamifar and Vidal
2009; Vidal 2011), where D and N denote the dimension-
ality and scale of the given dataset, respectively, K ≥ 1.
The primary step of the spectral based subspace clustering
methods is to calculate the coefficient matrix C by solving
an optimization problem as follows:

min
C

L(XC,X) + λ‖C‖ξ, (1)

where L(·, ·) : RN×N → R+ denotes the reconstruction loss,
λ is the trade-off parameter and ‖·‖ξ denotes the regulariza-
tion term where different ξ’s lead to `0, `1, `2, `∞ or the
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nuclear norm (Vidal 2011; Yang et al. 2016). The algorithm
then employs the spectral clustering (Shi and Malik 2000)
on the affinity matrix derived from C for final assignments.
Note that in practice, both the number of subspaces K and
their dimensions {dj}Kj=1 are always unknown (Vidal 2011;
Wang and Zhu 2015). Hence, the goals of subspace clus-
tering include finding the appropriate K and assigning
data points into K clusters (Elhamifar and Vidal 2013;
Li et al. 2016).

However, modeling the cluster number in the optimization
framework is difficult (Li et al. 2016), since the definition of
clusters is unquantifiable on the complex data space. Sequen-
tially, most of the spectral based subspace clustering algo-
rithms set the parameter K manually, which achieve state-of-
the-art performance on the confined applications where the
number of clusters is fixed and given.

Clustering aims to group the similar patterns into the same
cluster by maximizing the inter-cluster dissimilarity and the
intra-cluster similarity. An effective way for estimating K
is to map the original samples into intrinsic correlation s-
pace, followed by an iterative optimization according to the
local similarity relationships among samples. Elhamifar et
al. (Elhamifar and Vidal 2013) propose that the ΓC achieves
a block-diagonal structure with K blocks corresponding to
K clusters, where C is derived from (1) and Γ denotes a
proper permutation matrix. Moreover, Peng et al. (Peng et
al. 2016) verify the intra-subspace projection dominance
(IPD) of C derived from (1) with various ξ’s, i.e., for all
xp,xq ∈ S and xk /∈ S, we have cpq ≥cpk. Hence, consider-
ing a graphG = (X,C) (Nasihatkon and Hartley 2011), i.e.,
xi,xj ∈ X being the vertices and cij being the weight be-
tween xi and xj , the automatic segmentation can be greedily
generated via the following two steps inspired by the densi-
ty based algorithms (Rodriguez and Laio 2014): 1) finding
K̂ initialized clusters {Ci}K̂i=1 by minimizing the weighted
sum of all inter-cluster connections. 2) assigning the remain-
ing samples x to a proper C by maximizing the weighted
connections between x and C.

Yet, since the low-dimensional sub-manifolds can be very
dense (Peng, Zhang, and Yi 2013), the points xi and xj
which are close regarding the pairwise distance may not
belong to the same subspace, especially near the intersection
of two subspaces. A hypergraph Ĝ in which one edge can
link up more than two vertices (Gao, Tsang, and Chia 2013;



Kim et al. 2014) is then proposed to replace the pairwise
G. Besides, the local geometry of each xi can be linearly
reconstruct from its correlated points (i.e.xj for which the cij
is large) (Yin, Gao, and Lin 2016). In this paper, we further
introduce a novel data structure termed the Triplet, i.e., τ , to
explore the local geometry with hyper-correlations rather than
pairwise similarity. Each τ contains three points, i.e., xi, xj ,
xk, together with their correlations, i.e., cij , cjk and cki, for
which we considered as a meta-element for clustering. All the
correlations are large enough to ensure that the three points
are strongly connected according to the IPD property (Peng et
al. 2016). The proposed triplet relationship achieves favorable
theoretical guarantee against the pairwise one in the following
two folds. On one hand, it is more robust when partitioning
the inter-cluster samples near the intersection of two sub-
manifolds due to the complementarity of multiple constraints.
On the other hand, it evokes mutual restrictions of neighbored
samples thus depicts a local geometrical structure, by which
we can calculate the segmentation greedily.

Sequentially, in this paper, we propose a framework termed
the autoSC to simultaneously estimate the number of clusters
and segment the samples by exploring the local geometri-
cal structure derived from the given coefficient matrix C.
Specifically, we first generate C by solving the subspace rep-
resentation problem in (1), followed by extracting the triplet
relationship τ . Then, we greedily initialize K̂ clusters, i.e.,
{Ci}K̂i=1, to maximize the inter-cluster dissimilarity among
triplets, which is obtained via a new model selection reward.
Finally, we assign each of the remaining samples into C to
maximize the intra-cluster similarity by optimizing a new
fusion reward.

We have mainly two contributions. First, we define the
triplet relationship τ which induces a high relevance and
locality among three samples to explore the local similarity,
and verify its favorable performance against the traditional
pairwise relation. Second, we design a greedy framework
for joint model selection and clustering utilizing the intrin-
sic geometrical structures depicted by the proposed triplet
relationships. Extensive experiments on benchmarks indicate
that our proposed autoSC outperforms the state-of-the-art
methods.

Related Work
Subspace Representations
Automatically finding the clusters of samples is a cru-
cial issue in computer vision (Elhamifar and Vidal 2009;
Zhao et al. 2017; Schroff, Kalenichenko, and Philbin 2015).
Traditional subspace clustering first constructs a sparse lin-
ear representation of each data sample using the remaining
as a dictionary (Li and Vidal 2015; Cheng et al. 2016). It
generates a coefficient matrix C ∈ RN×N by solving the
optimization problem in (1). By modifying the regularization
term, i.e., the value of ξ in ‖C‖ξ , researchers generate coeffi-
cient matrix C considering different intrinsic properties of
the data spaceX .

The `0 and `1 norm based algorithms (Yang et al. 2016)
intend to eliminate most non-zero values of C, since cij de-
notes the similarity between samples xi and xj and the con-

nections only exist when xi and xj belong to same subspace.
Meanwhile, there are `2 and nuclear norm based method-
s (Hu et al. 2014; Liu, Latecki, and Yan 2010) intending to
preserve as many the non-zero values inC. These framework-
s interpret the coefficient matrix by that each column of C,
i.e., ci, is the self-representation of xi, thus they preserve all
values to ensure the mapping invariance (also termed as the
grouping effect (Lu et al. 2012)). Recently, the mixed norms
such as trace Lasso (Lu et al. 2015) and elastic net (You et al.
2016) are applied to the optimization model for the tradeoff
between the sparsity and the grouping effect. There also arise
frameworks which incorporate various constraints into the
model. For example, (Guo, Gao, and Li 2013) considers the
similarity between neighbors in sequential data, of which the
new penalty ‖CR‖1 forces consecutive columns of C to be
similar whereR is a lower triangular matrix with −1 on the
diagonal and 1 on the second diagonal.

In this paper, we generate the triplet relationship by ex-
ploring the intrinsic geometrical structures depicted in the
coefficient matrix C from off-the-shelf subspace representa-
tion modules. We verify that the proposed method is robust
to the combination of C with various properties.

Estimating the Number of Clusters
However, in most real applications,K is unknown to the clus-
tering algorithms (Elhamifar and Vidal 2009). Considering
the block-diagonal structure of the coefficient matrix (Feng
et al. 2014), Liu et al. (Liu et al. 2013) propose to utilize
the heuristic estimator: K̂ = N − round(

∑
fε(σi)), where

ε is a cut-off threshold, σi denotes a singular value of nor-
malized Laplacian matrix and fε is a summation function
which counts different values regarding that σi < ε. The sin-
gular based methods (Favaro, Vidal, and Ravichandran 2011;
Elhamifar and Vidal 2009) rely on the large gap between
singulars, which is effective only when the sub-manifolds are
sparse in the ambient space.

The density based methods always iteratively find the opti-
mal number of clusters and the optimal assignment by ana-
lyzing the density among samples. In (Rodriguez and Laio
2014), Rodriguez et al. assume that the cluster centers are
characterized by a higher density than its neighbors and d-
ifferent centers should be far enough. For each sample xi,
its local density ρi =

∑
j X (dij − dc) and the distance

δi = minxj :ρj>ρi(dij) from points of higher density are it-
eratively calculated for comparison. The algorithm finds a
tradeoff between ρ and δ to decide the cluster centers and the
assignment of the remained samples. Wang et al. (Wang and
Zhu 2015) propose the Dirichlet process based Bayesian non-
parametric method (DP-space) to exploit the tradeoff between
data fitness and model complexity, which is more tolerate to
noisy and outlier values than the alternative algebraic and ge-
ometry solutions. Li et al. propose the SCAMS (Li, Cheong,
and Zhou 2014) which penalizes the clustering cost by mini-
mizing the Frobenius inner product −〈C,B〉 and estimates
K by minimizing rank(B), where B is a binary relationship
matrix encoding the pairwise relationships among samples.
Correlation clustering (CC) (Beier, Hamprecht, and Kappes
2015) minimizes the sum of the weights of the cut edges on



an undirected graph with positive and negative edge weights,
such that y∗ = argminy

∑
wijyij where the label yij = 1

as cut and yij = 0 as uncut. However, these algorithms only
take the pairwise correlation into consideration, and they can
not be robust when subspaces are very dense and samples of
different subspaces are not completely distinguished.

The hyper-graph relation (Lu et al. 2016; Purkait et al.
2014) avoids such drawbacks and the literature follows two
different directions. Some transform the hyper relationship
into another pairwise graph (Gao, Tsang, and Chia 2013;
Schölkopf, Platt, and Hofmann 2006), followed by the con-
ventional graph clustering method (Shi and Malik 2000) to
generate the segmentation. There are also generalization
methods (Liu, Latecki, and Yan 2010; Li et al. 2016) ex-
tending the pairwise graph to the hyper-graph or tensor anal-
ysis. For example, the tensor affinity variant of SCAMS, i.e.,
SCAMSTA (Li et al. 2016), exploits the higher order mathe-
matical structures by providing multi groups of nodes in Z ,
i.e., Z =

∑
k zr ◦ zr ◦ · · · ◦ zr ∈ {0, 1}N×N×···×N , where

zr ◦ zr denotes the outer product and zr ∈ {0, 1}N is the
indicator vector.

In this paper, we estimate K by initializing clusters with
optimal inter-cluster dissimilarities. We obtain the estimation
by exploring the local correlations induced by the proposed
triplet relationships, each of which depicts a hyper-similarity
among three samples. Both theoretical analysis and experi-
mental results demonstrate the effectiveness of the proposed
method.

Methodology
Notations and Problem Formulation
Given the data matrix X = {xi ∈ RD}Ni=1, subspace clus-
tering (SC) algorithms solve the optimization problem in (1)
to generate the coefficient matrix C, of which each entry
cij reflects the similarity of xi and xj . For each data sam-
ple xj ∈ S, the SC algorithms take advantage of the self-
expressive property, i.e., each data sample can be reconstruct-
ed by a linear combination of other points in the dataset (El-
hamifar and Vidal 2013; Belkin and Niyogi 2001). As a result,
xj can be written as

xj =Xcj , s.t. cjj = 0, (2)

where the data matrix X is considered as a self-expression
dictionary and cj = [c1j , c2j , · · · , cNj ] contains the coeffi-
cients of the combination. Considering a regularization with
various well-designed norms on cj , the calculation system
in (2) has the ability to preserve only the combinations among
samples in S. Inspired by (Peng et al. 2016), we first collect
the nearest neighbors for xj with top m coefficients in cj .
Definition 1. (m Nearest Neighbors) The m nearest
neighbors for each data point xj , i.e. Nm(xj) ∈ R1×m,
are defined as follows:

Nm(xj) = arg max
{xil
}

m∑
l=1

|cil,j |, (3)

where il is the set of ordinals for the nearest neighbors, cil,j
denotes the coefficient of xil and xj .

Based on the generated nearest neighbors, we define the
triplet relationship to explore the local hyper-correlation a-
mong samples.
Definition 2. (Triplet Relationship) The three samples
xi, xj and xk form a triplet relationship if and only if they
satisfy:

1xi∈Nm(xj) × 1xj∈Nm(xk) × 1xk∈Nm(xi) = 1, (4)

where 1x∈Nm
is the indicator function which equals to 1 if

x ∈Nm and 0 otherwise.
For easy illustration, we introduce the triplet matrix T ∈

Rn×3, where n denotes the number of triplets. Each row of
T , i.e., τ = {xi,xj ,xk}, denotes a triplet where xi,xj and
xk satisfy the requirement in (4).
Proposition 1. Given arbitrary three samples in one triplet,
i.e., τ = {xi,xj ,xk} ∈ T , we have {xi,xj ,xk} ⊂ S,
where T denotes the set of triplets and S denotes a specific
subspace.

Proof. Let c̃ be the optimal solution of the optimization
function:

min
c
‖x−Xc‖22 + λ‖c‖ξ, (5)

where ‖c‖ξ denotes the `ξ norm of c. We divide the vector c̃
into the following two parts:

c̃ =
[
c̃Dx , c̃D−x

]>
, (6)

where Dx and D−x denote the collections of intra-cluster
samples and inter-cluster samples of the sample x, respective-
ly. According to the Intra-subspace Projection Dominance
(IPD) which is proved in (Peng et al. 2016), we have

[c̃Dx ]rx,1 >
[
c̃D−x

]
1,1
, (7)

for `ξ being equal to `1, `2, `∞ and nuclear norm, where
[c̃Dx ]rx,1 denotes the rx-th largest absolute value of the en-
tries of [c̃Dx ], rx denotes the dimensionality of the subspace
of the intra-cluster samples of x.

Assume a binary coefficient matrixC∗ satisfies the follow-
ing function:

c∗ij =

{
1, cij ∈ crc,m,
0, otherwise,

(8)

where crc,m denotes the m largest values of c. According to
(4), the triplet τ = {xi,xj ,xk} satisfies c∗ij × c∗jk× c∗ki = 1.
Besides, we have m� N

K , hence the preserved m values are
of the intra-cluster samples of x. Since c∗ij × c∗jk × c∗ki = 1
and c∗ can only take the value of 0 and 1, we have c∗ij =
c∗jk = c∗ki = 1. Therefore, the three samples belong to same
subspace, i.e., {xi,xj ,xk} ⊂ S.

In contrast to the traditional pairwise relationship, the
triplet is more robust for partitioning the inter-cluster sam-
ples near the intersection of two sub-manifolds due to the
complementarity derived from (4). Meanwhile, the triplet re-
lationship depicts a local geometrical structure which enables
us to jointly estimate the K and clustering using a greedy
framework according to the local density among triplets.



In the clustering process, we iteratively fuse samples into
the clusters, i.e., {Ci}K̂i=1, where K̂ denotes the estimated
number of clusters. Therefore, In the I-th iteration, we define
the set of “in-clusters” triplets T Iin which are already assigned
into clusters, and the set of “out-of-clusters” triplets T Iout
which should be assigned in the following iterations. For
easy illustration, we reshape the matrices T Iin ∈ Rp×3 and
T Iout ∈ Rq×3 to the vectors XI

in ∈ R3p and XI
out ∈ R3q,

both of which preserve the frequency of each sample. We
then propose to optimize two new rewards, i.e., the model
selection and the fusion reward.
Definition 3. (Model Selection Reward) The model se-
lection reward Rm(C) for the clusters {Ci}K̂i=1 is defined as:

Rm(C) =
∑
i

f(Ci|XI
out)− λm

∑
i

f(Ci|XI
in), (9)

where f(C|X) is a counting function on the frequency that
x ∈ XI

out or x ∈ XI
in for all x ∈ Ci, λm denotes the

trade-off.
By maximizing the model selection reward Rm(C), we

generate the initialized cluster {Ci}K̂i=1 with the following
two advantages where K̂ is the estimated number of clusters.
1) Samples in C are of high density, i.e., have large amount of
correlated samples inXout, which enables to merge as many
in the next iteration; 2) Each C is of little correlation with sam-
ples inXin, which eliminates the overlap of the inter-cluster.
Thus, we can simultaneously estimated K̂ and initialize the
clusters by optimizing the model selection reward Rm.
Definition 4. (Fusion Reward) The fusion reward opti-
mizes the probability that xj ∈Xout being assigned into the
cluster Ci, which is defined as:

Rif (Ci|xj ∈Xout) = f(xj |Ci) + λff(Nm(xj)|Nm(Ci)),
(10)

whereNm(xj) denotes the m nearest neighbors of xj and
Nm(Ci) denotes the set of m nearest neighbors of samples
in Ci, λf denotes the trade-off.

We calculate K̂ fusion rewards {Rif}K̂i=1 for each xj ,
which represent the probabilities that xj being assigned into
clusters {Ci}K̂i=1, respectively. We then merge xj into the
cluster with the largest fusion reward, and move the xj from
Xout toXin.

To determine the first triplet for construct a new cluster,
we propose to maximize the local density defined as follows.
Definition 5. (Local Density) The local density of the
triplet τ regarding to theXout is defined as follows:

ρ(τ ,Xout) =

|n|∑
j=1

f(xnj |Xout), (11)

where xnj denotes the sample in current triplet τ and n is
the set of their ordinals, |n| denotes the scale of n.

Also, to determine the optimal triplet to merge into the
initialized clusters, we define the connection score as follows.

Algorithm 1 : Automatic Subspace Clustering (autoSC)
Input:X = [x1, · · · ,xN ] ∈ RD×N .
1: Calculate the correlation matrix C by (1);
2: for i = 1 : N do
3: Calculate the m Nearest NeighborsNm(xi) by (3);
4: end for
5: Generate the triplet matrix T ∈ Rn×3 by (14);
6: Reshape T toXout ∈ R3n,Xin = ∅;
7: K̃ = 1;
8: Calculate τ K̃ini by (15);
9: while ρ(τ K̃ini,Xout) > ρ(τ K̃ini,Xin) do

10: CK̃ = τ K̃ini;
11: CK̃ = CK̃ ∪ {τ

∗} where τ ∗ is calculated by (16);
12: Xin =Xin ∪ τ K̃ini ∪ {τ ∗};
13: Xout =Xout/(τ

K̃
ini ∪ {τ ∗});

14: K̂ = K̃ + 1;
15: Calculate τ K̃ini by (15);
16: end while
17: Merge Ci and Cj if we have (18); Get K̂ clusters;
18: for j = 1 : |Xout| do
19: Calculate C∗ for xj by (19);
20: end for
Output: The cluster assignment {Ci}K̂i=1.

Definition 6. (Connection Score) The connection score of
the sample xi towards the sample xj is defined as:

s(xi,xj) = f

xi∣∣∣∣ n
′⋂

k=1

(
1xj∈τk × τk

) , (12)

where 1xj∈τk is equal to 0 when xj ∈ τk and otherwise
equal to 1, n′ is the number of all triplets in Tout.

Note both definitions can be easily extended with different
components, e.g., τ ’s or C’s, of which the extension can be
found in the supplementary material.

The Clustering Model based on Triplets
We greedily optimize the proposed model selection reward
Rm and the fusion reward Rf in autoSC to simultaneously
estimate the number of clusters and generate the segmentation
among samples:

max
G,K̂

K̂∑
k=1

Rm(Gk) + λ

K̂∑
k=1

Rf (Gk|X),

s.t. Gk
⋂
Gk′ 6=k = ∅,

K̂⋃
k=1

Gk = [1, · · · , N ],

(13)

where λ is the trade-off, G = {G1, · · · ,GK̂} denotes the set
of the result groups, K̂ is the estimated number of clusters
and [1, · · · , N ] denotes the universal ordinal set of samples.

We illustrate the proposed autoSC in Algorithm 1. In this
section, we interpret the implementation details of the opti-
mization in three steps including: 1) generating the triplet



relationships T from the coefficient matrix C; 2) estimating
the number of clusters K̂ and initializing the clusters C; 3)
assigning the samples x ∈Xout into proper cluster.

The Generation of Triplets The coefficient matrix C re-
flects the correlations among samples (Elhamifar and Vidal
2009). Larger value indicates stronger belief for the connec-
tion between samples. For instance, cij > cik indicates a
larger probability for xi and xj being in the same cluster
over xi and xk. Accordingly, we explore the intrinsic local
correlations among samples by the proposed triplets derived
from C.

Many subspace representations guarantee the mapping
invariance via a dense coefficient matrix C. However, the
generation of triplets relies only on the strongest connections
to avoid the wrong assignment. Therefore, for each column
of C, i.e., ci, we preserve only the top m values which are
then modified to 1 for a new binary coefficient matrix C∗.

Then, we extract each triplet from C∗ by the following
function:

τ = {xn1 ,xn2 ,xn3} ∈ T ,
if and only if : c∗n1n2

× c∗n2n3
× c∗n3n1

= 1,
(14)

where c∗xy denotes the xy-th value of C∗. Note each sample
x can belong to many triplets. Therefore, we consider each
τ as a meta-element in the clustering, which improves the
robustness due to the complementarity constraints.

The Initialization of the Clusters In the I-th iteration, we
first determine the initialized triplet (termed as τ Iini) from
Tout to be the basement of the cluster C. Then, we merge the
most correlated samples of τ Iini into C. Finally, we detect the
repetitiveness between C and the “in-cluster” samples XI

in
to avoid the redundancy.

Following (Rodriguez and Laio 2014), we initialize a new
cluster from τ Iini with highest local density:

τ Iini = argmax
τ

ρ(τ ,XI
out), (15)

where ρ calculate the local density as shown in Definition 5.
The high local density of the triplet evokes the most connec-
tions between τi and other triplets, which induces the most
connections between xnij and other samples inXI

out.
Once the initialized triplet τ Iini is determined, we iterative-

ly extend the cluster C by fusing the most confident triplets.
For each triplet τi in Tout, we calculate the sum of the connec-
tion score regarding the samples in C to greedily determine
whether the samples in τi should be assigned into C:

τ ∗ = argmax
τ

3∑
j=1

|m|∑
κ

snjmκ
,

s.t.

3∑
j=1

|m|∑
κ

snjmκ > 1; {xnj}3j=1 ∈ τ ; {xmκ}
|m|
κ=1 ∈ C,

(16)

where n,m denote the set of ordinals for the samples in τ
and C, respectively. We iteratively update the auxiliary sets
T Iout, T

I
in,XI

out andXI
in in the iteration.

(a)

(b)

(c)

(d)

(e)

Figure 1: The visualization of the clustering labels for four
methods, i.e., (a) SCAMS, (b) DP, (c) SVD, (d) DP-space
and (e) the proposed autoSC. The experiments are executed
on the extended Yale B dataset with 8 subjects. As shown,
SCAMS over-segments the samples, while DP-space assigns
the majority into one cluster. The proposed autoSC does not
suffer from these problems.

We terminate the process of model selection and get K̃
clusters if and only if τ K̃+1

ini satisfies:

ρ(τ K̃+1
ini ,XK̃+1

out ) ≤ ρ(τ K̃+1
ini ,XK̃+1

in ). (17)

Specifically, if the samples of τ K̃+1
ini are of high frequency in

XK̃+1
in , i.e., the triplet with the highest local density in T K̃+1

out

is already contained in T K̃+1
in , we consider the clusters are

sufficient for modeling the intrinsic sub-manifolds.
We also introduce an alternative step to check the redun-

dancy among clusters {Ci}K̃i=1. We calculate the connection
scores s for small-scale clusters against others, and merge
the highly correlated clusters Ci and Cj if we have

sij > min(|Ci|, |Cj |), (18)

where |C| denotes the number of samples in C. We then get
the initialized clusters {Ci}K̂i=1, where K̂ is the estimated
number of clusters and K̂ ≤ K̃.

The Assignment of the Remaining Samples In this stage,
we assign each of the remaining samples into clusters which
evokes an optimal fusion reward. For xj , we find its optimal
cluster C∗ by the following equation:

C∗ = argmax
Ci

Rf (Ci|xj), i ∈ {1, 2, · · · , K̂}, (19)

where Rf (C|x) is the fusion reward defined by (10).

Experiment
Setup
In the experiments, we first compare the proposed autoSC
with various automatic methods on two benchmark datasets,
i.e., the extended Yale B and the COIL-20 dataset. Then, we
verify the robustness of the proposed method with combina-
tions to different C derived from various subspace represen-
tations. We also design comprehensive evaluation metrics to



Table 1: Overall Comparison between autoSC and other algorithms on subsets of the extended Yale B and COIL-20 dataset. The
coefficient matrix C derived from SMR is utilized as the correlation matrix of DP, SVD and the proposed autoSC. As shown,
autoSC achieves the state-of-the-art performance on all reported configurations.

Methods Metrics extended Yale B COIL-20

8 15 30 5 10 15

SCAMS NCe 9.26 23.60 76.22 8.48 19.72 32.40
NMI 0.7183 0.7272 0.7266 0.5885 0.6527 0.6668

DP NCe 3.06 7.84 24.76 2.22 5.30 9.72
NMI 0.6196 0.5026 0.2166 0.6864 0.4467 0.3643

SVD NCe 2.40 9.06 24.00 0.48 2.58 8.36
NMI 0.7078 0.4993 0.2808 0.7024 0.7127 0.7224

DP-space NCe 2.08 8.96 23.92 0.78 4.78 9.38
NMI 0.0343 0.0226 0.0406 0.0904 0.0829 0.0718

autoSC NCe 0.76 2.08 4.98 0.38 1.18 0.80
NMI 0.9062 0.8589 0.8287 0.8315 0.7701 0.7266

validate the clustering performance, e.g., the error rate of the
number of clusters and the triplets, etc. All reported results
are the average of 50 trials.

Methods We make comparisons with the following meth-
ods: SCAMS (Li et al. 2016), density peak based method
(DP) (Rodriguez and Laio 2014), singular value decom-
position based method (SVD) (Liu et al. 2013) and DP-
space (Wang and Zhu 2015). Besides, we utilize the fol-
lowing subspace representation methods to generate different
coefficient matrix C, including LRR (Liu, Latecki, and Yan
2010), CASS (Lu et al. 2015), LSR (Lu et al. 2012), smooth
representation (SMR) (Hu et al. 2014) and ORGEN (You et
al. 2016). The coefficient matrix C is then used to calculate
the triplet relationships for the proposed autoSC.

Metrics To evaluate the performance of the proposed
triplets, we define the error rate A as follows:

A =
1

n

n∑
i=1

3− f(τi|g∗i )
2

, (20)

where n denotes the number of the triplets and f(τ |g∗) is
the counting function on the frequency that x ∈ g∗ for all
x ∈ τ . Here the output of f ranges from 0 to 2. The dynamic
set g∗i consists of samples in one subspace S according to
the ground truth, where S contains as many samples in τi as
possible.

We introduce the error rate of the number of clusters (NCe)
as the primary evaluation metric for the clustering methods
which estimate the number of clusters K̂ automatically:

NCe =
1

M

M∑
i=1

|K̂i −K|, (21)

where K is the real number of clusters, M is the number of
trials and K̂i is the estimated number of clusters in the i-th
trial. We also use the standard normalized mutual information
(NMI) (Li et al. 2003) to measure the similarity between two
clustering distributions, i.e., the prediction and the ground
truth. With respect to NMI, the entropy illustrates the non-
determinacy of one clustering to the other, and the mutual

Table 2: The evaluation results of A for the proposed autoSC
on the extended Yale B (eYaleB) and COIL-20 dataset. For
each column, we utilize the coefficient matrix of a specif-
ic subspace representation module. As shown, the autoSC
achieves consistency on the calculation of the triplets, which
guarantees the performance of the model selection and clus-
tering process.

Datasets LRR CASS LSR SMR ORGEN

eY
al

eB 8 0.0155 0.0158 0.0144 0.0135 0.0166
15 0.0147 0.0148 0.0148 0.0149 0.0145
30 0.0176 0.0157 0.0181 0.0181 0.0177

C
O

IL
20 5 0.0185 0.0195 0.0188 0.0175 0.0196

10 0.0252 0.0198 0.0188 0.0182 0.0210
15 0.0224 0.0203 0.0212 0.0196 0.0215

information quantifies the amount of information that one
variable obtains from the other.

The Comparisons among Automatic Clustering
We conduct experiments on two datasets (the extended Yale
B and the COIL-20) with different number of subjects, and
compare four methods with the proposed autoSC on the met-
rics of NCe and NMI. For DP, SVD and our autoSC, the
optimization module in SMR (Hu et al. 2014) is employed
to generate the coefficient matrix C. The DP-space method
simultaneously estimates the K̂ and finds the subspaces with-
out the requirement of coefficient matrix. All parameters of
the contrasted methods are tuned to be the best. Table 1 and
Figure 1 show the performance.

As shown, the averaged NCe of autoSC is relatively small-
er than others on all experimental configurations, meaning
that we can give a close estimation on the number of clus-
ters. For example, the estimated K̂ on the extended Yale B
with 8 subjects has the deviation which is less than 1, and
evokes the NMI higher than 0.9. SVD achieves comparable
result on the small-scale configuration of each dataset, but
the performance turns to be bad when the number of samples
increases. It is mainly because that the largest gap between
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Figure 2: The extension to different subspace representations
on the extended Yale B dataset with 8 subjects. The left figure
denotes the comparison of four methods using the NCe metric
while the right one is regarding the NMI. Each point in the
curves is derived by the combination of clustering method
and subspace representation. As shown, the proposed autoSC
achieves consistent performance on the evaluation of NCe.

(a) (b) (c) (d) (e)

Figure 3: The coefficient matrix C derived from different
methods on the extended Yale B dataset with 3 subjects. The
white regions denote the locations with non-zero coefficients.
Different methods, i.e., (a) LRR, (b) CASS, (c) LSR, (d) SMR
and (e) ORGEN, induceC with different characteristics, e.g.,
(d) derived from SMR is block-diagonal yet (e) derived from
ORGEN is sparse.

the pair of singulars decreases when the number of clusters
getting larger. SCAMS performs comparably for the NMI on
both datasets, however, as is illustrated in Figure 1 (a) and
Table 1, it provides a much larger K̂ than the ground truth,
e.g., K̂ > 100 when K = 30 on the extended Yale B dataset.
The NMI is friendly to the situation of over-segmentation,
making the metric NCe be the primary evaluation of the S-
CAMS method. The DP-space performs well on NCe, but has
bad performance on the NMI. It is because that most samples
are assigned into one cluster, and the other clusters are of
small scale. As a contrast, our autoSC achieves favorable
results with a satisfied generalization ability.

The Robustness to Subspace Representations
As illustrated, the methods including SCAMS (Li et al. 2016),
SVD (Liu et al. 2013) and our autoSC require the coefficient
matrix C as input. Also, for DP (Rodriguez and Laio 2014),
it needs to calculate the distance among samples. We calcu-
late the distance dij between samples xi and xj by dij = 1

cij

rather than the simple Euclidean distance. To verify the ro-
bustness of the proposed autoSC regarding various subspace
representations, we calculate the coefficient matrix C using
5 subspace representation modules, followed by the combi-
nations with the 4 methods which automatically estimate the
number of clusters and segment the samples.

Table 2 shows the evaluation results of A on both datasets

with the combinations of 5 subspace representations. The
experimental results on the extended Yale B dataset with 8
subjects are reported in Figure 2, while other similar experi-
ments with different configurations can be found in the sup-
plementary material. Moreover, we visualize the coefficient
matrix C derived from 5 subspace representation modules
in Figure 3. We can see from Figure 2 that the SCAMS, DP
and SVD methods are sensitive on the choice of the subspace
representation module. For example, DP estimates the K̂ as a
relatively close value to the ground truth when combined with
SMR (NCe = 3.06), but generates a totally wrong estima-
tion when combined with LRR (NCe = 265.60). Different
subspace representation modules generate coefficient matri-
ces with various intrinsic properties (Vidal 2011), thus the
parameter for truncation error ε needs to be tuned carefully.

For the proposed autoSC, it is stable on different com-
binations considering the metric of NCe and A, which
demonstrates the complementary ability of the proposed
method. For all combinations, the error rate of the triplet-
s obtained from (14) is less than 2%, which guarantees the
consistency of the proposed autoSC with different kind of
C. Furthermore, it shows better performance when com-
bined with CASS, LSR and SMR than other combina-
tions on both metrics in Figure 2. The reason lies on
the guarantee of the mapping invariance which is termed
as the grouping effect (Lu et al. 2015; Lu et al. 2012;
Hu et al. 2014), together with the filtering of weak connec-
tions and the self-constraint among samples within triplets.
As shown in Figure 3 (b), (c), (d), the coefficient matrices
are dense while it shows block-diagonal structure in Figure 3
(d) and each block corresponds to one cluster. Therefore, the
nearest neighbors which are used to generate the triplets can
be chosen precisely. As shown in Figure 3 (b), (c), (d), the
coefficient matrices are dense and block-diagonal which e-
vokes effective triplets. The autoSC can not achieve satisfied
performance when combined with the ORGEN as shown in
Figure 2. It is because that theC derived from ORGEN is too
sparse which contains insufficient localities for constructing
effective triplets.

Conclusion
In this paper, we propose the autoSC method to simultaneous-
ly estimate the number of clusters and segment the samples
according to the coefficient matrix derived by off-the-shelf
subspace representations. We consider this problem as an op-
timization process on two reward functions at the same time,
of which the model selection reward constrains the number
of clusters and the fusion reward facilitates the segmentation
of the samples. These two functions are greedily maximized
during the clustering process, utilizing the predefined data
structure termed triplet relationship. The triplet is more robust
than the pairwise relationships when partitioning the inter-
cluster samples near the intersection of two sub-manifolds
due to the complementarity of multiple constraints. Besides,
it evokes mutual restrictions of neighbors thus depicts a local
geometrical structure, by which we can calculate the segmen-
tation greedily. Extensive experiments on the benchmarks
demonstrate the effectiveness of our approach.
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