Automatic Model Selection in Subspace Clustering via Jufeng Yang, Jie Liang, Kai Wang, Yong-Liang Yang, Ming-Ming Cheng **Triplet Relationships** 杨巨峰, 梁杰(liang27jie@163.com), 王恺, 杨永亮, 程明明

1. Overview of subspace clustering

Subspace clustering models high-dimensional data samples into a union of low-dimensional linear subspaces. Traditional subspace clustering methods first optimize the following selfrepresentation problem followed by employing a spectral clustering to calculate the final assignments.

3. Clustering Procedure

Algorithm 1 : Automatic Subspace Clustering (autoSC)

Input: $X = [x_1, \cdots, x_N] \in \mathbb{R}^{D \times N}$.

- 1: Calculate the similarity matrix C with self-representation optimization;
- 2: for i = 1 : N do
- Calculate the *m* Nearest Neighbors $N_m(x_i)$; 3:
- 4: **end for**
- 5: Discovering the Triplet Relationships and generate the triplet matrix $T \in \mathbb{R}^{n \times 3}$;

6: Reshape
$$T$$
 to $X_{out} \in \mathbb{R}^{3n}$, $X_{in} = \emptyset$;
7: $\widetilde{K} - 1$:

2. Triplet Relationship

1. Triplet relationship is more robust when partitioning the inter-cluster samples near the intersection of two subspaces due to the complementarity of multiple constrains. 2. It evokes mutual restrictions of neighbored samples thus

8: Find the initialized triplet τ_{ini}^{K} according to local density; 9: while $\rho(\tau_{ini}^{K}, X_{out}) > \rho(\tau_{ini}^{K}, X_{in})$ do $\mathcal{C}_{\widetilde{K}} = \boldsymbol{\tau}_{ini}^{K};$ 10: $\mathcal{C}_{\widetilde{K}} = \mathcal{C}_{\widetilde{K}} \cup \{\tau^*\}$ where τ^* has high-relevance with 11: $\mathcal{C};$ $oldsymbol{X}_{in} = oldsymbol{X}_{in} \cup oldsymbol{ au}^K_{ini} \cup \{oldsymbol{ au}^*\};$ 12: $\boldsymbol{X}_{out} = \boldsymbol{X}_{out} / (\boldsymbol{\tau}_{ini}^{K} \cup \{\boldsymbol{\tau}^{*}\});$ 13: K = K + 1;14: Calculate τ_{ini}^{K} ; 15: 16: end while 17: Merge C_i and C_j if we have $s_{ij} > \min(|C_i|, |C_j|)$; Get \widehat{K} clusters; 18: for $j = 1 : |X_{out}|$ do Calculate \mathcal{C}^* for x_j using the fusion reward: $\mathcal{C}^* =$ 19: $\operatorname{arg\,max}_{\mathcal{C}_i} R_f(\mathcal{C}_i | \boldsymbol{x}_i), i \in \{1, 2, \cdots, \widehat{K}\};$ 20: end for **Output:** The cluster assignment $\{\mathcal{C}_i\}_{i=1}^K$. Model Selection Reward: $R_m(\mathcal{C}) = \sum f(\mathcal{C}_i | \mathbf{X}_{out}^I) - \lambda_m \sum f(\mathcal{C}_i | \mathbf{X}_{in}^I)$ $R_f^i(\mathcal{C}_i | \boldsymbol{x}_j \in \boldsymbol{X}_{out}) = f(\boldsymbol{x}_j | \mathcal{C}_i) + \lambda_f f(\boldsymbol{N}_m(\boldsymbol{x}_j) | \boldsymbol{N}_m(\mathcal{C}_i))$ Fusion Reward:

depicts a local geometrical structure, by which we can calculate the segmentation greedily.

Local Density of Triplet: $\rho(\boldsymbol{\tau}, \boldsymbol{X}_{out}) = \sum f(\boldsymbol{x}_{n_j} | \boldsymbol{X}_{out})$

4. Performance

Dat	asets	LRR	CASS	LSR	SMR	ORGEN
eB	8	0.0155	0.0158	0.0144	0.0135	0.0166
(al	15	0.0147	0.0148	0.0148	0.0149	0.0145
e	30	0.0176	0.0157	0.0181	0.0181	0.0177
20	5	0.0185	0.0195	0.0188	0.0175	0.0196
Π	10	0.0252	0.0198	0.0188	0.0182	0.0210
CC	15	0.0224	0.0203	0.0212	0.0196	0.0215

Methods	Metrics	extended Yale B			COIL-20		
		8	15	30	5	10	15
SCAMS	NC_{e}	9.26	23.60	76.22	8.48	19.72	32.40
SCAMS	NMI	0.7183	0.7272	0.7266	0.5885	0.6527	0.6668
DP	NC_e	3.06	7.84	24.76	2.22	5.30	9.72
Dr	NMI	0.6196	0.5026	0.2166	0.6864	0.4467	0.3643
SVD	NC_e	2.40	9.06	24.00	0.48	2.58	8.36
310	NMI	0.7078	0.4993	0.2808	0.7024	0.7127	0.7224
DP space	NC_e	2.08	8.96	23.92	0.78	4.78	9.38
DF-space	NMI	0.0343	0.0226	0.0406	0.0904	0.0829	0.0718
outoSC	NC_e	0.76	2.08	4.98	0.38	1.18	0.80
autose	NMI	0.9062	0.8589	0.8287	0.8315	0.7701	0.7266

Error rate of the triplet relationships on top of different self-representation schemes. The robustness of triplet relationship guarantees the performance of model selection and subspace clustering in the unified model.

Overall comparison between autoSC and other contrastive methods on subsets of extended Yale B and COIL-20 datasets.

5. Conclusion

1. The triplet relationship induces a high relevance and locality which is validated to be favorable against the traditional pairwise correlation.

2. Our unified framework for joint model selection and subspace clustering explores the intrinsic geometrical structures using triplet relationships, and outperforms the existing methods.

Evaluation of the extensions to different selfrepresentations on Extended Yale B dataset with 8 subjects using NC_e (Left) and NMI (right). As shown, the proposed method achieves favorable performance against other contrastive methods.

Visualization of the clustering labels for all contrastive methods conducted on extended Yale B dataset with 8 subjects.

Any comments or suggestions are welcome. Email: liang27jie@163.com Homepage: http://cv.nankai.edu.cn/